0001	
1	ILLINOIS POLLUTION CONTROL BOARD
2	IN THE MATTER OF:)
)
3	WATER QUALITY STANDARDS AND) R08-09
	EFFLUENT LIMITATIONS FOR THE) (Rulemaking-
4	CHICAGO AREA WATERWAY SYSTEM) Water)
	AND THE LOWER DES PLAINES)
5	RIVER: PROPOSED AMENDMENTS)
	T0 35 Ill. Adm. Code Parts)
6	301, 302, 303 and 304)
7	REPORT OF PROCEEDINGS held in the
8	above-entitled cause before Hearing Officer Marie
9	Tipsord, called by the Illinois Pollution Control
10	Board, taken before Laura Mukahirn, CSR, a notary
11	public within and for the County of Cook and State
12	of Illinois, at the Thompson Building, 100 West
13	Randolph, Chicago, Illinois, on the 10th day of
14	September, 2008, commencing at the hour of 1:00 p.m.
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
0002	
1	A P P E A R A N C E S
2	MS. MARIE TIPSORD, Hearing Officer
	MR. TANNER GIRARD, Acting Chairman
3	MR. ANAND RAO
	MR. NICHOLS MELAS
4	Appearing on behalf of the Illinois
	Pollution Control Board
5	
	ILLINOIS ENVIRONMENTAL PROTECTION AGENCY
6	1021 North Grand Avenue East
	P.0. Box 19276
7	Springfield, Illinois 62794-9276
	(217)782-5544
8	BY: MS. DEBORAH WILLIAMS
	MS. STEPHANIE DIERS
9	MR. ROBERT SULSKI
	MR. SCOTT TWAIT
10	MR. HOWARD ESSIG
11	BARNES \& THORNBURG
	One North Wacker Drive
12	Suite 4400
	Chicago, Illinois 6606-2833
13	(312) 357-1313
	BY: MR. FREDRIC P. ANDES
14	Appearing on behalf of the Metropolitan Water Reclamation District

HEARING OFFICER TIPSORD: Good
afternoon. I hope everyone had a nice lunch. And I believe we are ready to turn to the IEPA's questions. There are prefiled questions for -- we finished with Dr. Petropoulou, so we're ready for Dr. Gerba or Dr. Tolson.

MS. DIERS: Dr. Gerba, I'm going to start with Question 3 of our prefiled questions. On Page 2 of your prefiled testimony you state, the indicators selected are those which have been traditionally used and those recommended by the United States Environmental Protection Agency and the World Health Organization for assessment of recreational water quality, NRC 2004. First, could you please explain which organisms were chosen because they were traditionally used?

DR. GERBA: Okay. On our list judicial ones would be fecal coliforms, E. Coli, enterococci. Some European countries actually have used salmonella as an indicator in recreational water quality and viruss.

MS. DIERS: And the next question, which organisms were chosen because they were recommended by U.S. EPA for assessment of recreational water qualities?

DR. GERBA: Basically enterococci and E. Coli, although fecal coliforms have been used, of course.

MS. DIERS: And which organisms were chosen because they were recommended by WHO for assessment of recreational water quality?

DR. GERBA: The World Health
Organization recommends a number of organisms and criteria and for potentially selection of different organisms. But fecal coliforms, E. Coli, and enterococci are also on that list.

MS. DIERS: I'm going to jump down to No. 6.

MR. ETTINGER: May I ask one question about that? Do you like any of those indicators?

DR. GERBA: Do I like them?

MR. ETTINGER: Yeah. Do you think any of them are -- indicate whether pathogens are
present or not?
DR. GERBA: No. There's no -- I mean many studies have shown there's really no direct correlation between the various pathogens, particularly the viruss, I should say, and the protozoa and parasites and the indicators. That's -- the traditional ones I mentioned, the fecal coliform, the E. Coli and enterococci. It's one of the reasons pathogens were actually done as part of this study.

MR. ETTINGER: So are you aware of any indicator that you would use?

DR. GERBA: There's pluses and minuses to use of any indicator, but one of the big problems with any of the indicators currently in common use is they don't necessarily relate to the occurrence of various pathogens in the water. For example, if I chlorinated sewage effluence, cryptosporidium or Giardia are fairly resistant to chlorination. These indicators are not. So it's hard to establish a correlation with it. If I used UV light -- adenovirus, they're resistant to

UV light where the bacterial indicators are very susceptible. So you can have situation with hardly any indicators with a lot of pathogens.

MR. ETTINGER: And I think you said none of the traditional indicators, they all have problems -- are there any -- I'm sorry -- untraditional indicators that you like better, or is there anything you would use other than correctly measuring pathogens?

DR. GERBA: I think in the future a combination of actually looking for certain pathogens which might create the greatest risk that some of my colleagues propose using adenoviruses because they're in greater abundance than a lot of the other water-born pathogens, particularly the enteric viruss. Other people in the past have even suggested enteroviruses as better indicator of the risk. To give you -- bacteroides has been suggested, another bacterial group, anaerobic bacteria that occurred in the human gut, for example, and other types of anaerobic bacteria have been suggested as potential
better indicators because they're more associated with fecal pollution; and some of them, more specifically, with human intestinal tract, an indicator of human fecal
pollution. And they've also been suggested and studied a lot. But, unfortunately, they're anaerobic organisms and are more difficult to work with. Bacteriophages have been suggested and coliphages which are bacterial viruses have also been suggested as indicators of the recreational water quality.

MR. ETTINGER: Independent of what has been suggested, is there any of them that you like? If you were stuck with some sort of indicators, are there any of them that you like?

DR. GERBA: You know, not that I can really pick out without -- you know, not offhand I couldn't really say, pick one.

MR. ETTINGER: Thank you.
MS. DIERS: As I said, I'm going to go to Question 6 on the prefiled questions. On Page 4 of your prefiled testimony, you state that levels of pathogens found in the CAWS
were equal to or lower than values you have observed in other places with both disinfected and undisinfected effluents. Is it your professional opinion that the common practice of effluent disinfection at wastewater treatment plants in the United States is unwarranted based on the science?

DR. GERBA: I think that's really a policy and management question rather than a science question.

MS. DIERS: Okay. Question 7: On Page 5 of your prefiled testimony, you state that disinfection is warranted in situations where direct human contact in the immediate vicinity of an outfall is possible or where effluent is discharged to areas involving the production of human food. And I believe you answered our first one. So I'm going to ask, what do you mean by areas involving the production of human food?

DR. GERBA: I think I covered that. I was talking about shellfish in the marine environment.

MS. DIERS: Is that all, just the
shellfish?
DR. GERBA: Yeah. Because shellfish concentrate viruses, and particularly viruses from the -- maybe 1,000 times above levels you find in the ambient environment. So they are a particular issue.

Other types of seafood
could -- and also consumed raw by a lot of people. That's the other consumer -- other types of seafoods are usually cooked.

HEARING OFFICER TIPSORD: If I may,

Dr. Gerba, what about water that might then be used for irrigation, would that be --

DR. GERBA: Do I think it should be disinfected?

HEARING OFFICER TIPSORD: Yes.
DR. GERBA: If it's food crops, definitely. And that's a decision in the United States by the individual states. In California, I believe it -- or maybe not. You don't disinfect -- you don't have to disinfect the sewage effluent if it's nonhuman food crops that are being irrigated. And that's done in practice in California.

But if it's human food crops, not only should it be disinfected, but it also should be given tertiary treatment and filtered. There are a lot of steps before -- The situations where I've seen that done, usually it's advanced tertiary treatment using -- going through ultrafiltration membranes and that. The assurance here is because it's going to be used for human consumption has to be very high that there's no pathogens. And oftentimes pathogen levels are monitored in the at least the initial phases of those types of situations.

HEARING OFFICER TIPSORD: And, to your knowledge, there's no shellfish or use of CAWS waterway system for irrigation; is that correct?

DR. GERBA: No, not that I'm aware of.
MS. DIERS: Question 8: You state that it is not clear that wastewater disinfection always yields improved effluent or receiving water quality. Is it your testimony that disinfection should only be required when it is demonstrated to yield
water quality improvements?
DR. GERDA: It depends on the objectives on what the water is going to be used for and the impact. That's really, I think, more management decisions, because it depends on how the water is going to be used in discharge or what impact might be to the users of that water and how that impact takes place.

MS. DIERS: Based on your -- this is Question 9. Based on your experience, do you have an opinion one way or another what indicator organism or organisms would you recommend to U.S. EPA to use in the establishment of water quality criteria for the protection of primary and secondary contact recreational activities?

DR. GERBA: I really don't have an
opinion on that right now which one might be better than another.

MS. DIERS: And my last one is
Question 11: Page 5 of your prefiled testimony you state, therefore, it is uncertain if disinfection designed to remove
indicators can be effective in the removal of pathogens and in the reduction of pathogen risk. Could you please explain what you mean by this statement?

DR. GERBA: Yes. One example would be cryptosporidium, and the levels of chlorine usually apply in a lot of wastewater treatment plants I've seen. It would have no effect on the cryptosporidium because it's so resistant to chlorine. In fact, a lot of the outbreaks we see in swimming pools today are due to cryptosporidium because it can tolerate the one, three and four milligrams per liter of chlorine that are in swimming pools. So that would be one example. If we go to ultraviolet light, certainly in our own research and others, using UV light systems for disinfection wastewater, you'll find a lot more adenoviruses being released into the environment than would be if you were using chlorine. So, yeah, you'd have a situation where you would almost -- you certainly could meet standards, and other people have shown this, and still have a lot of adenoviruses
being present in the water because they're so resistant to ultraviolet light.

MS. DIERS: I think that's all I have for Dr. Gerba.

HEARING OFFICER TIPSORD: Let's move to your questions for Dr . Tolson.

MS. WILLIAMS: Okay. Dr. Tolson, I think it might have been Mr. Gerba who said earlier that low is a relative term. So I'm going to ask you a couple of questions about your use of the word low. You conclude -- in Question No. 2 for you it says you conclude that risk for gastrointestinal illness associated with recreational use of the Chicago area waterway are low. So can you tell us what would be a high rate, high risk of illness, high rate of risk of illness? Sorry.

DR. TOLSON: Dr. Gerba is right. It is a relevant term. And the benchmark we use to sort of set that is the acceptable risk for primary contact recreation of eight per 1,000.

MS. WILLIAMS: So you rely on the
eight per 1,000 in the U.S. EPA 1986 National Criteria Document as a dividing line between low and high or acceptable and unacceptable?

DR. TOLSON: No. We're not saying anything about that particular standard. What we're just saying is that here is a number, and you put that number in perspective. We're comparing it to this screening standard, this number that's out there just to give the reader a sense for where that would fall within risks that are otherwise reported.

MS. WILLIAMS: So it's low relative to
eight, the numbers you counted --
DR. TOLSON: And four and, yeah, and
six.
MS. WILHITE: So it's low -- I guess
that's my question. Would six be low? DR. TOLSON: In order to -- either I could report the number as two, or I could put it in context of it's a high or low. And to put in context of high or low, you need to come up with a threshold, and there's not many out there. One of them is the
U.S. EPA primary which is the lowest that EPA has come out with of 8 per thousand. So it's low relative to that number.

MS. WILLIAMS: I have some other
questions related to that, but I guess I'll go in order for now.

No. 3, you also conclude that the risks associated with recreational use of the CAWS are mainly due to secondarily loading of the waterway under wet weather conditions from CSOs and other dischargers, unquote. What do you base this conclusion mainly on?

MR. ANDES: Can I clarify something?
On that -- That's a conclusion for the whole report, so.

MS. WILLIAMS: But it's quoted from his testimony. That's where the quote is from.

MR. ANDES: I'm just trying to figure out. You could say he bases it on everything in the report --

MS. WILLIAMS: What in the report does he base it on?

DR. TOLSON: We've covered a lot of
this previously. But I think if you look at Exhibit 71, Table 5.9 as a summary result table, and I believe this was actually in my prefiled testimony also as Exhibit 1. I'm sorry. It was not. But it's in the report. And this shows risk from dry weather and combined dry/wet weather.

MS. WILLIAMS: 5-9? Am I looking at the wrong thing?

DR. TOLSON: Let me change that. I'm sorry. I had the wrong one. Let's go with 5-14. Because that shows disinfection versus nondisinfection. So Exhibit 71, Table 5-14. And there it shows, for example, North Side we have a 1.53 illnesses per 1,000 or 15 per 10,000 or 153 per 100,000. And compare that to including disinfection by, for example, UV which was the most efficacious in this case was 1.32 per 1,000.

MS. WILLIAMS: So it was the difference between the risks that you calculate for undisinfected versus disinfected that you base the statement on primarily?

DR. TOLSON: That was the whole goal of the study, and that's the essence of the results are there is a decrease, but the decrease is minor because of major contributors to the waterway are other sources other than the effluent from the wastewater treatment plants.

HEARING OFFICER TIPSORD: Off the record for a second.
(Off the record.)
HEARING OFFICER TIPSORD: Back on the record.

MR. ETTINGER: Let me ask one question. Did you calculate what the risk would be to swimmers?

DR. TOLSON: No. Swimmers was not an intake and ingestion rate scenario for which we developed any risk numbers.

MR. ETTINGER: Is it safe to swim there?

DR. TOLSON: We have no basis to make any assumption.

MS. WILLIAMS: Could you calculate what the risk to swimmers would be?

DR. TOLSON: I can calculate a lot of things, yes. There are going to be inherent uncertainties associated with that that will probably be greater than the uncertainties associated with the recreational use for which we have a considerable amount of background data on.

MR. ANDES: My objection is swimming isn't even part of the proposed uses here, so.

MR. ETTINGER: Well, we might want to reform the proposal since it seems so safe to go in there, you know. In fact, we may want to move that maybe next week.

MR. ANDES: Can't wait.
MR. ETTINGER: Can we take our canoeing numbers that are on 5-4 and use an exposure based on swimming and come out with numbers?

DR. TOLSON: We have not performed any of those calculations, and I can't really even speculate on what the result would be.

MR. ETTINGER: If I wanted to do that, could I just basically take this table of 5.4
and use the exposures that are for swimming as opposed to the ones for canoeing and come out with that number?

DR. TOLSON: It's not quite that
simple. You would have to actually go through the Monte Carlo simulations with different input assumptions for not only the ingestion rates for swimming, but also how long someone swims and --

MS. WILLIAMS: Well, I think this sort of goes to my next question. I ask in the next question how did we come up with the estimated doses for each activity in this table -- I mean they're listed in the table that Albert is referring to, right, 5-4? And you have them in terms of milliliter per hour.

DR. TOLSON: Yes. We've gone over --
MS. WILLIAMS: I understand, and you may have answered some of these. I think my questions are very general, so don't feel that you have to give a lot of specifics. But I would like to -- you to answer generally where these came from the
literature or did you make them up? Can you tell me where these came from? Maybe I should understand that from having listened to your testimony already, but I don't, so.

DR. TOLSON: We did actually spend quite a lot of time going through how we derived these ingestion rates.

MR. ANDES: They weren't made up. I think we can --

MS. WILLIAMS: Do you think this has been asked and answered? I don't feel that I understand the answer, so.

HEARING OFFICER TIPSORD: Could you
give us just a --
DR. TOLSON: Okay. I'll give you another summary. For example, for canoeing, there are assumptions that one needs to make on the ingestion rate. What we're looking at what that range would be for those ingestion rate numbers, we have to say, well, what's -what is -- let me back up.

HEARING OFFICER TIPSORD: Excuse me, Dr. Tolson. I don't mean to interrupt you, but I think perhaps you just started with
what Miss Williams is getting at. You said there are assumptions that have to be made. Are those assumptions from -- how did those assumptions, how were those assumptions made?

DR. TOLSON: Right. So it's the assumptions are that the range of the inputs there. And then once --

MS. WILLIAMS: So you made them up?
DR. TOLSON: One assumption is that --
Let me say this. One assumption is the ingestion rates vary over a range, and that they probably don't vary with the symmetrical distribution. In other words, the center, the most likely ingestion rate is probably not the center of that. There's probably some people that get much more, and those would happen less frequently. So you'd get a nonnormally distributed distribution of ingestion rates. So we have a lognormal distribution there. Then we have to sort of ground truth that to what we understand about literature citations for ingestion. So you look at things like, well, on those high end exposures, how bad can they be? We looked at
the U.S. EPA's swimming data or ingestion rates under that activity and said, you're probably not going to canoe down the river by holding onto the canoe and swimming down. So that's actually the concentration, the ingestion rates that we assumed for those high-end exposures. They were way out there on the tail.

MS. WILLIAMS: So if we wanted to see another line in your table that said swimming, milliliters per hour, could we find that directly from U.S. EPA?

DR. TOLSON: U.S. EPA has actually got a number of very good studies on swimming and ingestion rates. They come from pool exposures where we've got a great tracer, cyuranic acid, which is the chlorine stabilizer. And they put a bunch of kids in the pool and then you can measure their pee. And you can find out how much they drank by how much cyuranic acid comes out on the other end. And we find that EPA sort of uses a 15 mls per event as a swimming exposure.

There are other literature that
cites some other numbers, but that's pretty typical is 15 mls per event. Now we derived ours as per hour. So if you look at a
high-end exposure of, say, 20, and you assume that there's going to be there for three hours, that gives about 60 mls per event which is actually higher than the swimming ingestion assumed by EPA as a point estimate.

MS. WILLIAMS: But event means to them an event of ingesting water or no? It doesn't mean a time of going swimming. It means a time of --

DR. TOLSON: Right, right.
MS. WILLIAMS: -- accidentally --
DR. TOLSON: Typically it's event
driven. So if you were out there for eight hours, you may have gotten that entire 50 mls on five minutes within that, or it could have been disbursed out along -- they don't care about that. They just do it per event. Here we're doing it per hour, and we're also incorporating a time aspect because we realize that the different recreational activities are different in the amount of
time that people spend with the water.
MS. WILLIAMS: Did you want to follow up, Albert, or were you just clearing your throat?

MR. ETTINGER: I was just clearing my throat. I'm writing the new petition.

MS. WILLIAMS: So in deriving these numbers in Table 5-4, what assumptions were made regarding how frequently canoers or hand-powered boaters would capsize? I mean how did --

DR. TOLSON: So we didn't really
corporate any of that. This is a distribution of exposures that goes to high-end activities. Those people that we categorize from the UAA as having higher contacts, which includes the canoers, which is our representative sort of perceptor. The distribution is a continuum. There are some people that, on their event, they consume 30, there are some that are going to consume 32, some 50, some 20, and some 1 . There's a whole continuum of what's going to happen out there. We don't say that we've got a
capsized person or a noncapsized person and then define them in one group or another. Somebody may capsize and actually ingest very little. Others may not capsize and ingest much more.

MR. ETTINGER: Are there --
MS. WILLIAMS: Well, I'm just trying to understand then is if the person who capsized and ingested quite a bit, you would assume that would be somewhere in the 50
milliliter per event range, correct?
DR. TOLSON: I would not assume that.
I -- actually, we have no data on how much people ingest when they capsize. My speculation is that when you capsize, you're probably going to ingest some water. And we wanted to try to capture that within the continuum, the full distribution of what's out there. The way that we did that is we said here is some data on swimming, an activity where people are immersed. Let's use that as sort of our high end of our range for distribution.

MS. WILLIAMS: And I do understand
that. I guess, looking, though, at your numbers, they seem quite low.

MR. ANDES: On what basis?
MS. WILLIAMS: Compared to -- well,
I'm looking at, for a canoer, the range you give is 5.21 milliliters, per hour, right, 234. But is the highlighted line 50 percentile, what you're relying on? DR. TOLSON: Yes. MS. WILLIAMS: So 7.52 milliliters per hour. And based on your distribution of the number of hours, I understand you use statistics and include a lot of things, but a typical canoer we'd be looking at something quite a bit less than an event, as U.S. EPA looks at it for a swimmer, right? DR. TOLSON: Correct. So we're getting in a ballpark estimate of 19 mls per event which is -- compare that to 50 mls from swimming. I think we're actually being very conservative. I don't think many would argue that canoers get less. You would argue. okay.

MS. MEYERS-GLEN: If I may have a
quick follow-up. So you're equating the experience of someone swimming, that activity, with someone either falling out of a canoe and being submerged or flipping in a kayak upside down and then needing to right themself? That's the same kind of activity and less of a dose? Is that what -- is that what you're -- I'm trying to understand -Please answer.

DR. TOLSON: We didn't specifically look at capsizing and immersion from any particular activity. We just tried to define a continuum, a range, a full range that might incorporate all the possibilities that would happen from canoeing. Within that we needed to debound it somehow. It's not as much as you would have for drinking water. There's
got to be some sort of reality check on that. So our high end, our reality check on that was to say, well, if somebody was swimming their entire time that they were out on the river, how much ingestion would you get there? And we used that to sort of frame our distribution of ingestion rates.

MS. WILLIAMS: And by frame, do you mean that we would just make sure it was less than that? I guess I'm still trying to understand when you say frame.

DR. TOLSON: That's a reasonable characterization of it. I mean swimming, do you ingest more when you swim or when you canoe?

MS. WILLIAMS: And that's -- the assumption is you ingest more when you swim than when you canoe?

DR. TOLSON: Correct. And I'm saying that we've got a distribution here that extends beyond what you would have for swimming.

MS. WILLIAMS: And I -- sorry.
DR. TOLSON: Go ahead.
MS. WILLIAMS: We have a distribution that goes beyond because why?

DR. TOLSON: If swimming is 50 mls per event, we have a distribution that can give values up to five hours at 34 mls per hour, 150 mls . So the highest end of this range here is three times what EPA recommends for
ingestion rate for swimming.
HEARING OFFICER TIPSORD: Dr. Girard?
CHAIRMAN GIRARD: Dr. Tolson, in the Geosyntec report which is Exhibit 71. Do you have your copy there? Could you look at Page 100 and take a look at the last paragraph on Page 100 and tell us if that sort of summarizes some of the answers you've been giving to these questions?

DR. TOLSON: And I hope it does.
CHAIRMAN GIRARD: I hope so too.
DR. TOLSON: It's written in
mathematicalese here, so excuse that. But for canoes, a lognormal distribution of a mean of five and a standard deviation of five.

HEARING OFFICER TIPSORD: If you're reading, you need to -- the court reporter.

CHAIRMAN GIRARD: You can summarize it.

DR. TOLSON: So remember this is a lognormal distribution, so what that mean of a log of five gets you a distribution that looks like the figure in 5 point -- 5-2 of

Exhibit 71.
CHAIRMAN GIRARD: Go to like the third sentence which starts on Line 4 where you're talking about ingestion rates for your upper end.

DR. TOLSON: Got it. It says for the 90th to 100th percentile ingestion rates range from 14 to 34 mls per hour which implies that 10 percent of the population may be exposed to water ingestion rates approaching those observed in swimming or accidental gulping.

CHAIRMAN TANNER: Maybe the next one.
DR. TOLSON: The next one is this is consistent with the observation in Fewtrell 1994 study in which 8 percent of canoeists report capsizing, an event what that may result in ingestion rates similar to swimming or gulping.

HEARING OFFICER TIPSORD: Miss Dexter?
MS. DEXTER: In the ingestion rate studies that you cited, were any of the subjects under duress? Was that -- I mean -I'm not -- no. I'm saying did they study
what happens, how much water is ingested when somebody is drowning?

DR. TOLSON: If you're drowning on the CAWS, you've got a lot more issues than micro --

MS. DEXTER: I'm just saying in an instance when somebody capsizes a canoe -- or a kayak and is inexperienced, that's a panic situation. I'm wondering if there's a correlation between the swimming studies where people are playing and when somebody is actually in a stressful emergency situation.

MR. ANDES: Just a moment.
DR. TOLSON: Actually, I think we may
have the Fewtrell paper here that might address some of those comments. The Fewtrell study did not come up with ingestion rates associated with their 8 percent capsizing, but it did come up with a conclusion. Let me read this. Has this been admitted to the record yet?

HEARING OFFICER TIPSORD: I don't
think so.
MR. ANDES: I believe a partial copy
was introduced by Ms. Alexander.
DR. TOLSON: There are two Fewtrell papers: One, a 1992 study which has been admitted to the record, and this one would be a separate study, a 1994, which is quoted within the paragraph that I just read out of
the report.
HEARING OFFICER TIPSORD: Okay. Yes, Exhibit 74 is the other Fewtrell study from the effects of white water canoeing.

DR. TOLSON: That one is a 1992 study on white water canoeing. This one is 1994 study on marathon canoeing. And I would like to point out within the conclusions of the study, Conclusion 2 says the apparent lack of identifiable health effects in these studies suggest that it may be appropriate to use a relatively polluted water for low contact recreational activities.

HEARING OFFICER TIPSORD: And do we have a copy of that we can enter into the record?

MR. ANDES: We do.
MS. MEYERS-GLEN: Can I ask a
follow-up question to that, because it dovetails something else I was going to ask on that report anyway.

THE COURT: Go ahead.
MS. MEYERS-GLEN: Thanks.
HEARING OFFICER TIPSORD: But you need to speak up and ask one question at a time.

MS. MEYERS-GLEN: Thank you. In quantifying the amount of water ingested by canoeists Geosyntec relies on a report, I'm assuming it's that one, that in studies of rowing and marathon canoeists, approximately 8 percent of the canoeists at fresh water sites reported capsizing, and 16 percent of rowers reported ingesting some water. And that's actually in your Attachment 3 in the microbial risk assessment report, Pages 99 to 100 .

DR. TOLSON: I agree.
MS. MEYERS-GLEN: My question to you is do you know the mean level of experience for the marathon canoeists and rowers questioned about capsizing in this study?

DR. TOLSON: Clearly no.
MS. MEYERS-GLEN: And what is the spectrum of experience for the people that canoe and kayak on -- or jet ski on the CAWS?

DR. TOLSON: I have no knowledge of that either.

MS. MEYERS-GLEN: Thank you.
MR. ETTINGER: I'm sorry.
HEARING OFFICER TIPSORD: Wait a minute. Before we get too far away. I am marking as Exhibit 79 the health effects of low contact water activities in fresh and estuarine waters, E-S-T-U-A-R-I-N-E, by L. Fewtrell, et al. as Exhibit 79, if there is
no objection. Seeing none, it's Exhibit 79. Mr. Ettinger, go right ahead.
MR. ETTINGER: I'm just trying to follow-up on Tanner Girard's question regarding this paragraph on Page 100 of the report. I understand you had the swimming figure, and then there's some sort of mathematical formula. I'm not as well educated as journalists, so I don't understand all the math here. But how do you -- You just shape the bell curve?

What's -- How do you shape that? DR. TOLSON: It's a lognormal distribution. I teach a problemistic risk assessment class. And one of the activities I do is a couple of days where we work on this, is I have all the students record the time that they shower and the time that their spouse or significant other showers in the morning and bring it into class next day. And every year we get the same results; when you plot all those out, they're not normally distributed. There are a few people that have the 20 minute shower, and it's almost always a lognormal distribution that comes out of that. Natural processes tend to produce a lognormal distribution. It's a multiplicative process associated with a lot of natural events. If you look at a lot of indicator data, historically from the district they tend to follow a lognormal distribution. So a lognormal distribution is what we've assigned as sort of the underlying mathematical expression for how different people may ingest water. We don't have data
on every one of those to develop those probabilities, but that fits what we understand for a lot of natural processes.

MR. ETTINGER: Do you have any data other than this Fewtrell study and the swimming data?

DR. TOLSON: Mm-hmm.
MR. ETTINGER: What other data is
there?
DR. TOLSON: Well, if you have the two points, if you have a point within that distribution and you have an assumption of what the distribution is, you can fill the rest of the distribution in.

MR. ETTINGER: I only see one point. The one point is the swimming. Where is the other point?

DR. TOLSON: Zero. We know that everybody is going to have some ingestion, incidental ingestion or otherwise. So we
know it doesn't go any lower than that. So we bounded that -- we've bounded that intake and then we fit a distribution between those points.

MR. ETTINGER: So I've been canoeing for 20 years. I've never capsized a canoe. Would you say that I had a same chance as someone who --

DR. TOLSON: I'd say you have a better canoe record than I do, for one.

MR. ETTINGER: I'm just very cautious.
DR. TOLSON: I would say our estimates are probably over -- an overestimate for you. So you are on the left half of the bell curve, I'm sorry to say, left half of the distribution.

MR. ETTINGER: So let me get this right then. You've just got the swimming point, and then you just put a bell curve on that with no other data other than this Fewtrell study that says 8 percent of the guys capsize.

DR. TOLSON: It's not quite that simple. I mean you've got -- we can bound what the numbers are. We know it goes between zero and something high approaching swimming. So if you just have that data and you put a lognormal distribution in, you will
get a picture that looks like the figure that's in Exhibit 71 of incidental ingestion rate while for canoeists which is figure 5-2.

MS. WILLIAMS: Did U.S. EPA use a similar process, or did they use actual data in correlating their swimming figure?

MR. ANDES: In correlating the
swimming? I'm not sure -- in taking what action?

MS. WILLIAMS: So, for example, Albert gave the example of his canoeing. Well, I do not like to put my head under the water when I swim. I like to swim with my head out of the water. I suspect I have less events of ingesting water than the typical swimmer. How is the estimate of 50 milliliter per event translated into the 8 in 10 illnesses risk of swimming by U.S. EPA? Do you know?

DR. TOLSON: They did not consider that at all within their 8 per 1,000. But the way that -- the value that they were looking at there was a point estimate, their 50. They also add considerable conservatism with most of their ingestion inputs. And
this is one where I'm sure they did the same. But it comes from empirical data where
they've got 20 kids, they put them in the pool, they measure the cyuranic acid, back calculate how much pool water they ingested, took the average of that or took the 95th percentile of that, and that was the number that they're using for their ingested rate point estimate of 50 mls per hour.

MS. WILLIAMS: So they did not have to perform the statistical analysis like you did?

DR. TOLSON: I don't know how they did that. My guess is that they would have used an upper percentile of the range of the data that they had. So a little bit different of a statistical one, but a conservative one for their estimates also.

MR. ETTINGER: Did you do fishing and boating the same way?

DR. TOLSON: Fishing and boating are also input distributions that will follow some sort of lognormal pattern. For fishing we took the canoeing median of -- and we
essentially halved it. We said for fishing you would get maybe half of the intake that you would get for canoeing.

MR. ETTINGER: How do you figure that?
DR. TOLSON: There is like no data out there to calculate this. So this is a professional judgment. We think it's a conservative judgment based on my experience with fishing.

MS. WILLIAMS: Your personal
experience as a fisherman?
DR. TOLSON: I won't say we're basing it completely on my personal experience as a fisherman, but from what I've seen on TV, that's --

MR. ETTINGER: My personal experience is I get my hands all over the fish trying to get the hook out. But I've never capsized a canoe, so I guess I would have doubled the other way, right? Oh, well.

DR. TOLSON: Again, there are some professional judgment evaluations that go into here. We're using the fishing and the canoeing and the boating as sort of
representative of groups of high, medium, and low exposure. So your fishing is more of a high exposure, I guess, and your canoeing is a low. I think what we're we've done here, we've tried to capture in a conservative fashion the potential for ingestion from these three exposure events.

MS. WILLIAMS: So in Question 14 I ask, and I may jump around a bit here. I'm
trying to be chronological, but I don't think it's working. You testified that select -quote, selection of input distributions relied on literature derived sources, site-specific use information, and professional judgment. So which of these sources was used to estimate how long a canoeist or kayaker will be out in the water? And so I'm referring to, I guess, now to one of the tables. Do you have a table? DR. TOLSON: It might be helpful go to Figure 5.3. It's a pictorial sort of representation to it as opposed to the tabular form of Exhibit 71. That's a probability density -- you have it? That's a
probability density function for exposure duration for canoeists. Again, we need to sort of bound the range of what's possible out here, somebody is there for probably more than zero and less than twelve all day, probably make a better guess than that. If you're going to go out and go canoeing, we assume that you're out for at least an hour and we assume that you're out there for no more than five hours. That seemed like a reasonable range.

MS. WILLIAMS: So that answer to the question would be -- would it be it's not literature derived.

DR. TOLSON: No. I'm getting to some more specific data, I think, that will inform the --

MR. ANDES: I do have copies of that figure if anyone needs that. Do you have that?

HEARING OFFICER TIPSORD: Actually,
we --
DR. TOLSON: For this particular input there actually is survey data. This is much
easier to conduct. So there is survey data. And I believe EPA exposure factors handbook, the activity factors handbook which is one of the chapters in this huge volume of survey information that EPA has collected, has data on use statistics for parks and recreations around lakes, streams, and rivers. And the distribution that you see here which is a triangular distribution fits fairly nicely with the 10th and 90th percentiles of the recreational use for rivers and lakes. So there we have the exposure factors handbook data to sort of inform our decision. The problem with that data is we don't know if they were actually out there canoeing or not. So they were just used, they were recreating
in parks that had streams and lakes. So it may have included the time that they were in the parking lot before they got on the water. There was a lot of other uncertainties associated with that.

MS. WILLIAMS: So you're saying only 10 percent of the people would have been recreating for more than five hours?

DR. TOLSON: Correct. That's their total recreation there based on that survey. There were -- I think there was some in the survey there that had 24 hours for their recreation time. So they may have included homeless and such that were in the parks.

MS. WILLIAMS: Campers are not
homeless.
DR. TOLSON: I'm sorry. It may have included campers in there, but probably not people that are out on canoes. So I'm not sure how -- It's not directly relevant to fitting this distribution or we would have used that direct information. So what we've got here fits within the 90 -- 10th to 90th percentile. Because of the uncertainties associated with time that was not canoeing but also in the park, this probably overestimates the time that one would be in canoes based on that data. It's also interesting to note that the mean that we've got, 2.67, which is the mean of that triangular distribution, is also greater than the mean of the data from that survey
information which is like two and a half hours or something like that.

MS. WILLIAMS: How did you get your
mean?
DR. TOLSON: How did we generate our
mean?
MS. WILLIAMS: Yes.
DR. TOLSON: It's a triangular
distribution. You can analytically calculate what the mean is or you can probabilistically do it by just doing simulations and averaging up what the simulations are and dividing by the number of simulations.

MS. MEYERS-GLEN: Can I ask a
follow-up?
MS. WILLIAMS: Yes.
MS. MEYERS-GLEN: Question No. 12 for
you, this is right in line with that.
HEARING OFFICER TIPSORD: Stacy, we
cannot hear you at all.
MS. MEYERS-GLEN: On Page 101 of the microbial risk assessment report, that's your Attachment 3 to Dr. Tolson's testimony, I
would ask Dr. Tolson my question 12 for him,
since it seems kind of relevant: According to the report, that would be the microbial risk assessment, Geosyntec set exposure duration based on time for the Flat water Classic, a canoe and kayak race in the Chicago River. And the report states that according to friends of the Chicago River, race times in 2005 range from approximately 1 to 3.5 hours with majority times between 1.5 and 2.5 hours.

DR. TOLSON: Correct. I'm sorry. I should have also included that in your answer. We used other sources besides the EPA.

MS. MEYERS-GLEN: Well, the report concluded, though, that based on this information and professional judgment, again, triangular distribution was assigned to this input with a minimum time the canoeists must be in the water one hour, and the likeliest time in water for two hours. And my questions to you are, first one: If Geosyntec was aware that the average time of a race, and this is where people are trying
to paddle as quickly as possible to reach the finish line, is between 1.5 and 2.5 hours, why did the team select an even faster range between 1 and 2 hours as the time a person would normally spend in a canoe and kayak on the CAWS?

DR. TOLSON: I think you might have a little bit of misinterpretation of the ranges there. If you go back to Figure 5-3 of the report, and if you look, the majority of the Flat Water Classic canoe racers were between, what did we say, one and a half and two and a half hours.

MS. MEYERS-GLEN: Right.
DR. TOLSON: One and a half and two and a half hours. And you can see we actually estimated that exposure to the river is much longer, out to five hours. So if we were using that as a basis, then we've certainly overestimated, probably overestimated by a factor of two.

MS. MEYERS-GLEN: I'm a little confused, though. Because the next statement says here, "The training and distribution
that signed this input was a minimum time the canoeist would be in the water of one hour." And I'm confused as to why that one hour was chosen when during a race the average time -the quick time for that average was 1.5 , and
the fastest time that anyone could even paddle would have been an hour, when you're talking about a regular occurrence on the CAWS.

HEARING OFFICER TIPSORD: You keep asking compound questions. You need to stop after a question.

DR. TOLSON: Can we back up. And the
first question then again was?
MS. MEYERS-GLEN: Yes. The minimum time a canoeist would be in the water chosen here on Page 101 of your report is an hour, right?

DR. TOLSON: Yes. That is correct. And it's obviously the shorter the exposure, the lower the ingestion, potential ingestion, so yes.

MS. MEYERS-GLEN: Right. And you
chose that from the Flat Water Classic; is
that correct?
DR. TOLSON: We did not chose our input distribution on ingestion based solely on the Flat Water Classic. I think we informed our choice based on information from EPA surveys on recreational use around lakes and parks, and we also looked at the Flat Water Classic which is clearly people canoeing on the waterway, something we should look at. When we look at it in context of the Flat Water Classic, we find that our distribution that we're using here certainly incorporates those people and actually overestimates through the entire range the length of time people are there compared to the length of time people were on the Flat Water Classic.

MS. MEYERS-GLEN: Well, did you use any other information about recreation on the CAWS other than the race, the Flat Water Classic, to determine the average amount of time that recreators are normally out on that water -- on those waters?

DR. TOLSON: Yes, we did. I'm trying
to recall the specifics on this. But we actually contacted some boat rental facilities on renting boats, and I believe we got information that they had half-day boat rentals and one-hour boat rentals, and that was just sort of ancillary information that we put into our potential for recreating. Somebody was going to rent a boat for an hour, they're going to be out there for probably an hour.

MR. ANDES: Can I follow up?
MS. MEYERS-GLEN: Sure.

MR. ANDES: First, Dr. Tolson, let me ask: By using one hour's lower bound, if you had included smaller time periods of exposure, would those have shown less risk?

DR. TOLSON: That is correct. By truncating it at the one hour, we've increased our -- the exposure time and increased the ingestion rate and potentially overestimated risk for those recreators who were out there for less than one hour.

MR. ANDES: And then in terms of the first question here which says that the team
selected a range of between one and two hours, is that right, or -- in fact, can you explain what the two hours -- when you say the likeliest time in the water is two hours, can you explain what that represents and then explain to us what the range really is that you're using?

DR. TOLSON: Sure. The likeliest time is just the mid point on that, the one is the beginning point. But we don't talk specifically there in that sentence about the high end, which is five hours. So I think the misinterpretation is that you're taking the minimum and the mean, median, or the most likely number, and comparing that to the range of the median for the race.

MS. MEYERS-GLEN: You want your minimum, though, to reflect what truly is a minimum out in the water, though, correct? You don't want it to be --

DR. TOLSON: The minimum amount in the water may be five minutes. We did not reflect that. So in that respect we probably overestimated the risk for those people.

MS. MEYERS-GLEN: Based on the information, though, that you've collected, based on the Flat Water Classic, the EPA study, as well as rental locations, that's -what was the minimum that you found from those three sources out in the water?

DR. TOLSON: We don't have any specific -- We do not have any specific data on the rental times exactly how long people were on canoes. For the Flat Water Classic, I do not recall who the winner, what the winner got as far as time. You may know. Is it less than one hour? And, if so, then his risk would be even that one person would be overestimated with the evaluation as we've done it here.

HEARING OFFICER TIPSORD: Dr. Tolson, did you testify also that there are rental places that rent boats for merely an hour?

DR. TOLSON: I believe there are, yes.
At least in 2005 when we --
HEARING OFFICER TIPSORD: Thank you.
MS. MEYERS-GLEN: Well, did you
consider, and I guess I don't know if you
would, because I didn't realize that you had this other information, but did you consider other tour events such as Windy City Kayak Symposium, which offers numerous kayak trips --

HEARING OFFICER TIPSORD: Slow down, slow down, slow down.

MS. MEYERS-GLEN: -- that take from three to six hours. And actually the range from Friends of the Chicago River, who was instrumental in the Flat Water Classic where you got your other information, and all of their kayak trips last at least from three hours and mostly between three and six hours.

MR. ANDES: And I assume at some point that would be offered as evidence, because we don't have that to date.

DR. TOLSON: I do not have any survey data from them, any published reports or anything from them.

MS. MEYERS-GLEN: So you're not aware of any of that and that wasn't taken into account?

DR. TOLSON: That's correct. Long
time periods were taken into account within our distribution up to five hours. There may have been people that can canoe out there all day. I can't hold my bladder that long.

MS. MEYERS-GLEN: Those sources were not taken into account, correct?

DR. TOLSON: I have not looked at any data, any survey data from alternative sort of races or events that have been on the waterway. However, I believe our distribution that we've included for our ingestion rate takes into account a wide range of potential exposures on the waterway that, in my opinion, are a conservative estimate of time that people spend on the waterway in canoes.

MS. MEYERS-GLEN: Thank you.
MS. WILLIAMS: Did you, by any chance, review the testimony from the June 16 hearing yet in this matter?

DR. TOLSON: I'm sorry. I did not.
MS. WILLIAMS: Yes or no is fine.
That's fine.
CHAIRMAN GIRARD: Could I ask a quick
follow-up?

MS. WILLIAMS: Yes.
CHAIRMAN GIRARD: Dr. Tolson, looking at your Figure 5-3, you say you've -- you have a mean duration of two -- well, 2.67 or two hours and 40 minutes. Just eyeballing your graph there, what do you think the median would be in terms of half the people spend less time and half above? Would it -would the median be somewhere around three hours?

DR. TOLSON: The median would be lower than that.

CHAIRMAN GIRARD: Okay. So it would be -- but somewhere between two and two-thirds?

DR. TOLSON: Yes.
CHAIRMAN GIRARD: So still you're saying that even though your range is one to five hours, you've got a lot of individuals there in the mid range in terms of two to three hours' time in water?

DR. TOLSON: That is correct. There are more people that are in the two to three
hour than there are between the three and the four and the four and the five. And as in most of these skewed distributions, the tails -- less and less frequency in the upper tails.

CHAIRMAN GIRARD: Thank you.
HEARING OFFICER TIPSORD:
Miss Williams, I think we're back to you.
MS. WILLIAMS: I guess I'm looking at question ten now. On Page 3 of your testimony you state that recreational survey studies were used to provide insight on the types and frequency of recreational exposure expected in the waterway. Now, this is referring to something different than what we've been talking about previously, correct? What surveys are you talking about here?

DR. TOLSON: We relied solely on the UAA as the survey for that.

MS. WILLIAMS: And did those surveys consider the length of time or how -- or the frequency of recreation or anything?

DR. TOLSON: To my knowledge the UAA did not contain that information.

MS. WILLIAMS: And do you know who conducted those surveys that were in the UAA?

MR. ANDES: It's in an Agency document. You're asking him --

MS. WILLIAMS: I'm asking him if he knows who conducted those surveys.

DR. TOLSON: There were notes on the observation pages, but I don't remember,
recall the names of those that were involved with that.

MS. WILLIAMS: Okay.
HEARING OFFICER TIPSORD: And, for the record, the UAA we're talking about is the one that is Exhibit B to the Agency's proposal.

MS. WILLIAMS: I'm sorry. Attachment
$B ?$
HEARING OFFICER TIPSORD: Attachment
B. Sorry. Only because there are two of them in the record, I thought we should specify.

MS. WILLIAMS: Yes. And you
haven't -- you weren't able to look at any of the work that's being done by Dr. Dorovich
(ph.) regarding recreation in the CAWS. That wasn't - there's nothing available from his work about frequency or types of recreation, correct?

DR. TOLSON: This study was concluded, I think, before we had sufficient data to even consider that.

HEARING OFFICER TIPSORD: Have you had a chance to review his findings?

DR. TOLSON: We were not privy to -- I haven't seen it, so.

MS. WILLIAMS: So when you were
testifying yesterday, Ms. Alexander, I think, understood better than I do, about -- I think one of the witnesses referred to the fact that's like gambling; going out more often to recreate your risk, it's not additive, but it's more like gambling. Can you explain what that means?

DR. TOLSON: You leave with less money. Yeah. It's important to understand that the cumulative risk or the risk from repeated exposures, there's a lot of other caveats that had to be considered in here.

One is there's immunity, and immunity may influence the probability of getting infected on repeated exposures. And we didn't take that into account. That's an uncertainty that I think we've discussed to some extent within here. The other is how one would take five exposure events that may have a 1 percent chance of risk of illness and figuring out at the end of that one what was the probability that I would have gotten sick somewhere along that time. And there it's not just 5 percent which would be 5 times 1 percent. If you can think about it in terms of -- let's talk about in gambling. Say that you had a deck of cards and you wanted to get
hearts. That was your outcome that you were -- you were wanting to get a red card. That was your outcome that you were interested in. If you were to be dealt one card out, there's a 50 percent chance it would be a red card and 50 percent chance it would be a black card. So if you were to be dealt two cards face down, if it's 50 percent chance on the first one and a 50 percent
chance on the second one. Then you would conclude that I'm going to get a red card out of those two, and that's not the case. So it's not just strictly additive. Does that address it?

MS. WILLIAMS: It's not strictly
additive. DR. TOLSON: It's not additive at all.
It's independent events. HEARING OFFICER TIPSORD: Can I just
try to --
MS. WILLIAMS: Do you have a good way
of asking it?
HEARING OFFICER TIPSORD: Let me try
this. So, in other words, if I go out every single day and swallow a milliliter of water from the CAWS, my chances of getting sick are the same every single day, but they don't increase every day? DR. TOLSON: Yeah. It's a little bit more complicated than even that, because actually your chances of getting sick are actually less after each day.

HEARING OFFICER TIPSORD: Because you
begin to build an immunity?
DR. TOLSON: That is correct.
MS. WILLIAMS: But still somehow if I just go out and take a milliliter one day, my risk must be lower than Marie's over the whole summer, right?

DR. TOLSON: I'll agree with that, yes.

MS. WILLIAMS: But your report doesn't account for --

HEARING OFFICER TIPSORD: But that's because if I'm going out every day, my exposure is more often; not because the increased quantity of water.

DR. TOLSON: Absolutely.
MS. WILLIAMS: But when you are giving
a risk level --
DR. GERBA: Basically that's what the EPA does in setting -- based on their epidemiological data. Your risk of getting ill is an independent event. When they set those enterococci or E. Coli standards based
upon the number of days they get ill, that's every time they go out. That's the event.

They don't consider it's a cumulative process because it's not additive. That's based on one time swimming event each time.

HEARING OFFICER TIPSORD: We have another follow-up back there.

MS. HEDMAN: Susan Hedman from the office of the Attorney General on Behalf of the People of the State of Illinois. I'd like to follow up with Dr. Gerba on this exchange about risk. Isn't it true that from the perspective of the recreational user of the CAWS this is much like a game of Russian roulette only with pathogens instead of bullets?

DR. GERBA: Right. It gives it -- The events are independent of each other every time you play Russian roulette, right?

MS. HEDMAN: And you've over the years I think frequently invoked that analogy; is that right?

DR. GERBA: That's right.
MS. HEDMAN: Is it true that you said that every time you go to the bathroom you're playing Russian roulette?

DR. GERBA: It depends whose bathroom you use.

MR. ANDES: Can we cite where he said
that?
DR. GERBA: I'm sure I have.
MS. HEDMAN: I mean if I can enter the article into evidence as an exhibit.

HEARING OFFICER TIPSORD: Absolutely.
MS. HEDMAN: It's a 1997 article from the Arizona Daily Wildcat, and I believe it is about a study that Dr . Gerba did relating to use of bacterial infections from use of -and pathogenic infections from use of public bathrooms.

DR. GERBA: That's sort of the analogy we're using here, actually.

HEARING OFFICER TIPSORD: I'm going to mark this as Exhibit 80 if there's no objection. Seeing none, it's Exhibit 80.

MS. HEDMAN: And I also would like for you to tell me if you recognize the following statement, this is from a transcript of an interview you did on the Today Show in 2005, and you were talking about --

MR. ANDES: Can I ask why these couldn't have been provided earlier so we could see them before he has to answer questions?

MS. WILLIAMS: Are these articles
cited in his --
MR. ANDES: No.
MS. HEDMAN: This morning when he was testifying he used the phrase the right spot at the wrong time, and I recalled him using that same phrase in a discussion of risk assessment in a Today Show interview I read about him. And I would just like to -- we're trying to clarify what is this risk assessment model. And we talked a lot about Monte Carlo models. We talk about all kinds of simulations. We've talked about all kinds of sophisticated risk assessment models. And we're trying to pin down this question of what is the risk to the recreational user. And --

MR. ANDES: And I don't think that addresses my question of why these materials couldn't have been provided earlier.

HEARING OFFICER TIPSORD: Because she found them as a result of his testimony this morning as a follow-up.

MR. ANDES: You only found those today?

MS. HEDMAN: Yes, I did. In fact, you can see that I printed them out today. I have -- when I saw his testimony, as with all the witnesses, I did a fair amount of reading of other statements that they made.

MR. ANDES: So his prefiled testimony?
MS. HEDMAN: Yes.
MR. ANDES: That was certainly available before yesterday.

MS. HEDMAN: That's true. I didn't
know that it would come up.
HEARING OFFICER TIPSORD: We can go ahead. He can certainly answer them to the best of his ability without being reacquainted with them.

MR. ANDES: Fine. Okay.
MS. HEDMAN: Well, I just have one more question, and that is whether you recall saying in that Today Show interview, and I
will enter this into evidence as well, talking about exposure to pathogens in the workplace.

DR. GERBA: Right.
MS. HEDMAN: Quote, it's sort of like germ roulette. You know, you touch the right spot at the wrong time and you bring your fingers to your nose, mouth, or your eyes, you can pick up colds that way. Eighty percent of the infections you get you're going to pick up from your environment.

DR. GERBA: Right.
MS. HEDMAN: I thank you. That's it.
HEARING OFFICER TIPSORD: Let's enter that as an exhibit as well.

DR. GERBA: It's a lot more dangerous to go to your office than to go canoeing on the CAWS.

MS. HEDMAN: But from the perspective of the recreational user of the CAWS?

DR. GERBA: Right. It's a matter of your exposure and how much you're exposed to the concentration. So that's a good -- in fact, we use that -- I use that as a classic
example in teaching about risk and risk assessment about how it's all -- how it's a gamble and how you calculate what your odds are. The whole thing with any type of exposure is always to keep your odds in your favor and not in the organism's favor.

HEARING OFFICER TIPSORD: If there's no objection, I will mark that as Exhibit 81. Seeing none, it's marked as Exhibit 81. I would, however, note that both Exhibit 80 and 81 contain markings in both a yellow highlight and also asterisks in black pen that were on the documents when I received them.

MS. WILLIAMS: Okay. So, Dr. Tolson, the risk in the three segments you studied was significantly lower in the -- I believe the Calumet. That was the lowest.

MR. ANDES: Which particular risk are you referring to?

MS. WILLIAMS: I guess we can look at Question 17. You conclude that the Calumet Waterway was the lowest illness rate compared to North Side and Stickney?

DR. TOLSON: Yes. I'm with you.
MS. WILLIAMS: And the question is why, but I guess to refine it more is that because there are fewer recreators primarily or because the pathogen levels are lower.

DR. TOLSON: The number of recreators is not important here. It's what kind of recreational activity they were doing. If they were doing recreational activities with somebody who is in the category of high exposure group, then they would ingest more water; couple that with the fact that the Calumet tended to have lower levels of pathogens, including viruses which are mostly responsible for the secondary illness, that's why you get both low incidents of primary -when I say primary, I mean the actual recreators getting ill from the Calumet, and
you get lower incidents of secondary illness from Calumet exposure.

MS. WILLIAMS: Did one of those factors have more influence over the other, the type of recreation versus the pathogen level?

DR. TOLSON: Give me a second. I might be able to give you an exact answer. Yes. Actually, we did a quantitative evaluation of that. The receptor type input was responsible for 38 percent of the variance in the distribution of the exposures.

MR. ANDES: What table is that?
DR. TOLSON: This is Table 5-16 in
Exhibit 71. So here it kind of ranks the sensitivity of the model to the various inputs. You can see for Calumet we have . 38 for receptor type, . 05 for weather type, . 02 for fishing ingestion rate, how that distribution affects it. And you had asked about what was it, duration.

MS. WILLIAMS: Pathogen levels. I don't think that's on here.

DR. TOLSON: Well, pathogen levels are not included within this sort of sensitivity analysis because they were handled in a bootstrapping scenario. So the pathogen levels are what they are.

MS. WILLIAMS: Do you know why they're
lower in Calumet?
DR. TOLSON: Why pathogen levels are
lower?
MS. WILLIAMS: Yes.
DR. TOLSON: We base that on our analytical data which is probably the most robust pathogen analytical data --

MR. ANDES: So your answer is --
MS. WILLIAMS: Did you say the most
robust what?
DR. TOLSON: Pathogen recreation -recreational water pathogen microbiological survey that, you know, I can think of based on that data.

MS. WILLIAMS: Robust in terms of the number of samples or the variety of pathogen sampled for?

DR. TOLSON: We have a number of pathogens, we have a number of sampling locations, we have wet and dry weather events. All of those really signify that this is a study that has taken into account a number of the different factors that have been missed in other surveys of pathogens.

MS. WILLIAMS: So other surveys have fewer numbers of samples?

DR. TOLSON: There are some literature citations out there of pathogens and waterways that were single events. I think if Fewtrell's study was pathogens on a single day, so, yes.

MS. WILLIAMS: Okay. But going
back -- so Calumet had by far the lowest percentage of canoers, right, in table 5-11 of the three samples?

DR. TOLSON: That is correct.
MS. WILLIAMS: So presumably if there were more canoers in Calumet, their risk would have been higher, correct?

DR. TOLSON: That is correct. In fact, if you go to Table 5-12 and we were to put everybody in a canoe on the Calumet, the risk there is .52. So even including everybody in the highest exposure group, you can see that the risks are still fairly low compared to either North Side or Stickney which had higher pathogen levels. Mind you, they're all much lower than the 8 per 1,000
that we have been talking about as kind of our benchmark.

MS. WILLIAMS: So you're saying the point -- wait. I didn't understand what you meant by if we put everyone in a canoe.

DR. TOLSON: On Table 5-2 we've stratified the risk. We've assumed that every recreational event out of 1,000 there was a canoeing event in the calumet. The risks for that would be . 52 illnesses per 1,000 recreational users.

MS. WILLIAMS: So this table reflects the difference in pathogen levels across. Would this table be --

DR. TOLSON: Yes, it does.
MS. WILLIAMS: Okay. Thank you.
MR. ETTINGER: Just to be clear, you have no idea why the pathogen levels varied from one site to another?

DR. TOLSON: I do not.
DR. GERBA: Why it varies from one sampling point to the other?

MR. ETTINGER: Yes. Do you have any
idea?
DR. GERBA: It would be speculation. It's based on flow rates, how much water -what the per capita water consumption is in the various wastewater plants. Some plants may have more industry that uses more water than another, so that would affect the final dilution in the pathogens that might be
present, efficiency of the plant. That's a good one. Those are among a lot of other factors.

MR. ETTINGER: Efficiency of what
plant?
DR. GERBA: How well the sewage treatment processes are being operated by the plant.

MR. ETTINGER: Do we think the pathogens are coming from sewage treatment plants?

DR. GERBA: Some of them could be, yes. That's what the outfall data suggests.

MR. ANDES: If I can follow up on that. And there is some reduction of pathogen levels --

DR. GERBA: Just in sewage treatment
itself you get significant reductions of pathogens than most of them in it. An example, helmet worms (sic.) would be a classic example. You'd probably remove almost all of them in the sewage --

MR. ANDES: Can you repeat that and speak up a little bit.

DR. GERBA: Helmet worms would be a classic example of that. You probably remove almost 100 percent of them in the sewage treatment process. It varies with the individual pathogens. Some you remove more and some you remove less.

MR. ETTINGER: That's with secondary treatment you would remove 100 percent of that particular pathogen?

DR. GERBA: That particular one, yeah. But it varies with other pathogens. Some you might remove only 90 percent.

MR. ANDES: You're not talking about with disinfection specifically? You're talking about --

DR. GERBA: No. This is without
disinfection.
MR. ETTINGER: I understood that.
MR. ANDES: I want to make sure
everyone did.
MR. ETTINGER: Okay. And when we have these high pathogen levels or higher pathogen levels during wet weather events, that could be or I guess -- well I'll ask you. Do you think that is because we're then seeing raw sewage going in from the CSOs?

DR. GERBA: That's what I presume since there are CSOs present that discharge into the waterway during the wet water events, yeah.

MR. ANDES: Are there other sources as
well?
DR. GERBA: There could be other sources, too. Animals could contribute, birds can contribute, large numbers of pathogens, for example, like kafla bacter (ph.).

HEARING OFFICER TIPSORD: Mr. Harley, follow-up?

MR. HARLEY: Keith Harley. I
apologize I had to be in and out today, and I
know that Mr. Andes will interrupt me if you've already answered this question. I was trying to understand some differences in testimony between General Superintendent Lanyon and what we heard yesterday on this very point. General Superintendent Lanyon indicated that he believed that there were pathogen levels 10 to 200,000 colony forming units at the point of discharge. Yesterday you testified that that did not correspond with the levels that you saw and you used, as an example, the North Side plant. Am I correct so far?

MS. PETROPOULOU: I think he was referring to fecal coliform concentrations.

MR. HARLEY: My point is still this: You testified that there were 42,000 and 56,000 colony forming units during dry weather at the North Side plant; is that correct?

MS. PETROPOULOU: I can verify that for you. I think I was reading from the report, right?

MR. HARLEY: You were reading from the
report.
MS. PETROPOULOU: And I think I was reading fecal coliform concentrations, not pathogens.

MR. HARLEY: Oh, okay. My question is this: Were your subsequent risk assessments based on a particular level of pathogens being in effluent at the point of outflow?

MS. PETROPOULOU: Pathogens you said?
MR. HARLEY: Yes.
DR. TOLSON: I don't -- we discussed in some -- we discussed quite a bit about how we developed pathogen concentrations in the waterway. The concentrations that Mr. Lanyon -- Dr. Lanyon discussed were not pathogenic fecal coliform. If you want to characterize the range that he gave compared to the range that we found in our study. Is that the question?

MR. HARLEY: It's part of the question, yes.

DR. TOLSON: Well, if I were to look at people's heights, that would be my thing that I'm looking at, and if I were to take a sample by looking at this room and developing a range for U.S. citizen heights, I would get some numbers that would balance between something. This is a representation of potentially the U.S. population. But if I were to go out and look at everybody in the Thompson Center here, I'd probably find people that were on the extreme. So what you see is you see records from the district that are 20 years, I don't know how long they've been measuring there, but probably quite a long time --

MR. ANDES: And I think -- if I can stop you there. We could read back Mr. Lanyon's statement, but I think it was a general statement in terms of what's in effluent. It wasn't specific to a facility. MR. HARLEY: I guess my question then is this: In the absence of a numeric permit limit -- in the absence of a numeric permit limit on either pathogens or indicators, what is to prevent any plant from discharging an amount of pathogens or indicators far in excess of what's contained as your assumption
and your risk assessment?
MR. ANDES: That's a legal question. I'll object. He's asking what's to prevent -- in the absence of a numeric limit. They're scientists. They're not lawyers.

MR. HARLEY: Would your risk assessment change if the level of pathogens from an unregulated search --

MR. ANDES: I'll object to the characterization. They have a permit. They're not unregulated.

HEARING OFFICER TIPSORD: Why don't you try it this way -- or let me, Mr. Harley, if I might.

MR. HARLEY: I think you know exactly where I'm going. HEARING OFFICER TIPSORD: Would your assumptions change if there was a discharge of pathogens in excess of what you've seen in the sampling? Is that close enough?

MR. HARLEY: That's -- it's a hypothetical.

HEARING OFFICER TIPSORD: What if the pathogens -- what if somebody discharged
double the amount of pathogens you saw in your sample? DR. TOLSON: Yes. Clearly that's the
case. If you change the numbers, you change the risks. I mean our risks are based on our measured pathogen concentrations in the waterway which, as I stated before, is a very robust sample. It has a number of samples along the waterway, it includes dry and wet weather. So, yes, if our representation of the waterway is different than a different representation, the outcome risk will change.

MR. HARLEY: To your knowledge, in the absence of a numeric permit limit, could such an elevated level of pathogens discharge occur at one of these sewage treatment plants?

MR. ANDES: Objection again. They're not qualified to opine on what happens in the absence of numeric permit limit.

HEARING OFFICER TIPSORD: I'll sustain
that.
MR. HARLEY: Another question I have is you mentioned disparity between very high
levels and low levels. Is it possible that you could have an extreme event that is outside the range of what you observed in your risk assessment in terms of pathogen or indicator loading from a sewage treatment plant?

DR. TOLSON: We tried to capture that, to some degree, qualitatively by actually sampling the outfalls. While it's possible that we could have a drinking water epidemic within the city that may cause effluent levels to change for some of the pathogens, there are lots of things that are possible. So yes.

MR. HARLEY: Thank you.
HEARING OFFICER TIPSORD: Go ahead.
MS. WILLIAMS: Well, let me ask, you
have said this a couple times about the robust sampling, so let me go to Question 22. On Page 7 you testified that the weather and waterway sampling relied on a representative of the entire recreational year. And my question was how was the representativeness of the data determined? And I guess what I'm
asking at this point, Mr. Tolson, is did you rely on Miss Petropoulou for the representedness of data? Did you make your own conclusion about this data?

MR. ANDES: Can you address weather and then waterway separately?

MS. WILLIAMS: That's fine.
DR. TOLSON: Tell me which question
you're on.
MR. ANDES: Twenty-two.

DR. TOLSON: So the weather as we discussed yesterday is representative because we actually used meteorological data from that year. So are we good with that?

MS. WILLIAMS: Yes. Let's talk about the pathogen sampling.

DR. TOLSON: The pathogen sampling, we constructed a sampling program that would capture both dry and wet weather events.

MS. WILLIAMS: And you were involved in that as well?

DR. TOLSON: I was involved in the discussions leading to that sampling event.

HEARING OFFICER TIPSORD: I'm sorry.
That was the protocol we discussed with Dr. --

MS. WILLIAMS: So you agree then that just two years' worth of data is sufficient to be representative?

MR. ANDES: Representative of what? All recorded time?

MS. WILLIAMS: Of all years.
DR. TOLSON: I'm going to punt to Dr. Gerba, because he probably has more experience in looking at other waterway sampling data.

DR. GERBA: Without the data, I can't say that. I mean I don't know what the pathogens were ten years ago or are going to be ten -- in the future probably.

MR. ANDES: Let me follow up on that. You looked at wet weather events and you looked at dry weather events. And reasonably is there anything else you should have looked at?

DR. GERBA: Those would have the -wet weather events would have the biggest impact on water quality within the waterway.

MS. WILLIAMS: I think the question is whether the wet weather data and the dry weather data you looked at were representative of all wet weather and dry weather data?

DR. TOLSON: From a purely statistical standpoint, it's a representative sample from the 2006 waterway concentration. So, yes, it is representative samples.

HEARING OFFICER TIPSORD: If I may, I think -- So when you state in your testimony, Dr. Tolson, that it's representative of the entire recreational year, you mean for the years of the study?

DR. TOLSON: Correct. For the years in the study and the weather types within the study; the dry weather days, the wet weather
days.
HEARING OFFICER TIPSORD: But not
necessarily for --
DR. TOLSON: I can't for the things for which we have no data.

HEARING OFFICER TIPSORD: Not for the entire 2000s. Just for those two years.

MS. WILLIAMS: We've -- I think we've already established 2005 wasn't a typical year, correct?

DR. TOLSON: It was a dry year, correct.

MS. WILLIAMS: Would you say 2006 was
a typical year?
DR. TOLSON: I don't have the data to characterize 2006. However, whether it was atypical or not, I don't think it would have made a big difference in our assessment because we selectively went for wet weather days whether it was a wet weather day that happened as a one-time event in a year where it didn't rain, or whether it had rained the week before I don't think would make much of a difference in our assessment.

MS. WILLIAMS: Did you, in making this statement in your testimony that this sampling is representative, did you consider the actual methodology that was used to collect the samples? Or I mean did you -are you --

MR. ANDES: You mean the sampling
methodology?
MS. WILLIAMS: Yes. Are you speaking
to the sampling methodology as well?
DR. TOLSON: I'm not speaking to that. The data is what the data is.

MR. ANDES: I may be able to clarify
it with a follow-up. To the extent that your waterway sampling was focussed near the sewage treatment plant, it would actually be conservative in terms of the levels that you would have seen; is that right?

DR. TOLSON: That is correct.
MS. WILLIAMS: But if it was closer, it would have been higher, right? I mean I don't understand why that --

MR. ANDES: They were -- As I understand it, you focussed particularly on areas close to the plants?

DR. TOLSON: Under dry water conditions they were within 10 to 15 waterway widths from the outfalls the Stickney, North Side, and Calumet.

MS. WILLIAMS: And when you stick the dry weather samples you sampled in three
locations in the stream and put them together as a composite, correct?

MS. PETROPOULOU: No. We sampled actually at one upstream location at two depths, one meter and the surface. And then one downstream location.

MS. WILLIAMS: So at your upstream and downstream locations, you did not take samples both at the each bank and in the center?

MS. PETROPOULOU: What we did, we actually composed it across the width of the channel. With one on the left side, we collected one-third of the volume, then both moved to the center of the channel, they collected a third of the volume there, and then on the right side of the channel.

MS. WILLIAMS: Did you do the same thing with the wet weather samples?

MS. PETROPOULOU: No. We didn't do that during the wet weather sampling because Dr. Gerba surveyed the waterway. And based on his experience with sampling, he didn't think that the channels were wide enough to
provide information.
MR. ANDES: You can have him
perhaps --
MS. WILLIAMS: Can you explain, Dr. Gerba, why you recommended they sample differently during wet weather than they did during dry weather?

DR. GERBA: You mean the number of samples? I'm not sure differently, what -MS. WILLIAMS: The methodology --
MS. PETROPOULOU: The sampling that we did during the dry weather that included the sides of the channel. And then the center, during wet weather, we did it in the center of the channel.

DR. GERBA: Because there wasn't really -- I think maybe you should answer that. There wasn't any difference in data statistically.

MS. PETROPOULOU: Well, we looked at the difference -- yeah. We looked at the difference at one meter and the surface. During wet weather we went to the center of the channel.

MS. WILLIAMS: Because?
MS. PETROPOULOU: Because the width of the channel, it wasn't a very wide -- the width of the channel, based on the discussions with Dr. Gerba, was not wide enough to -- worth the extra effort to
composite from the sides and the center. So what we captured during wet weather, it was what we measured in the center of the channel.

MR. ANDES: Would that logically be the maximum for a higher --

DR. GERBA: We have a high flow in there, yeah. It's going to be flowing in there rapidly.

MR. ANDES: In the middle in
particular?
DR. GERBA: That's right.
MS. WILLIAMS: Isn't it possible you'd have more input of pathogens at the sides?

DR. GERBA: That's a small channel. I mean relative mixing and flow rates and boat traffic, the large barge traffic, that water gets stirred up a lot. So --

MS. WILLIAMS: So you concluded it
was --
HEARING OFFICER TIPSORD: Let him
finish.
DR. GERBA: In the large inflow of water in there. I have based also on the data sampling, you know, at different depths in the channel it seems to be fairly well mixed of what we can see, at least relative to pathogen levels.

MS. WILLIAMS: So you extrapolated the degree of mixing from dry weather to conclude that in wet weather it would be well mixed as well?

DR. GERBA: It would probably be more mixed because there is so much flow of water in there. Water is flowing in there, there's mixing taking place all the time.

MS. WILLIAMS: Does that conclusion reflect temperature differences when you have an influx of wet weather flow?

DR. GERBA: I don't believe this
channel is stratified, to my knowledge.
MS. WILLIAMS: In wet weather do we
know? I mean we don't know, do we? How do we know?

MR. ANDES: Do you have any basis for believing that?

MS. WILLIAMS: I'm trying to
understand his basis for believing it's not. And it sounds like it's -- there isn't one.

DR. GERBA: I don't believe, based on my experience in the last 30 years of doing field work on sampling, it should be any different. And the data in the dry weather events seemed to certainly confirm that, and previous studies I've done on different
locations and depths of small channels doesn't seem to be a big difference.

CHAIRMAN GIRARD: Could I ask just a clarifying question or summarizing it then?

So do you believe that in the wet weather, based on measurements and other information the District might have, there's a higher flow rate in those streams?

DR. GERBA: Well, if there's more water input, I would expect that during the wet weather event I would think that would
increase the flow rate in those channels. CHAIRMAN GIRARD: How does the flow rate then impact mixing?

DR. GERBA: There might be more mixing. There's probably being sediment material thrown in there, water is being dumped on the top of the -- or on the bottom, and so there's going to be a lot of mixing. And also the boat traffic that goes there creates mixing events, too.

CHAIRMAN GIRARD: So basically you
assumed faster flow rate, more mixing, so you only needed one sample point. Is that --

DR. GERBA: Well, based on the
previous data and my experience, too. I didn't necessarily say that you might have different levels of pathogens and different levels -- but I thought that was representative of the risk, let me put it that way. I don't think you can have 1,000 times difference in pathogen loading at one location versus another. Certainly in the dry weather event there wasn't much difference between the top water and one
meter depth. You would expect less mixing in those dry weather conditions. We didn't really see a difference on that. So I didn't really actually expect there to be a difference. I was one of the people who questioned whether we should be sampling at one meter depths, because I didn't think there would be as much difference. And it turned out there wasn't.

MR. ANDES: There was not?
DR. GERBA: Was not, no.
MS. WILLIAMS: I think you've
answered -- Do you have anything else?
CHAIRMAN GIRARD: That's it. Thank
you.
MS. WILLIAMS: I think you've answered it pretty well. There's just one piece that I'd like to make sure I understand. By choosing to sample only in the center and also sampling quite a bit downstream from the
actual com stations themselves -- I mean I understand you sampled as close as you thought you could, but they were certainly not right there. There was a distance.

MS. PETROPOULOU: It wasn't where I thought we could. It's, as mentioned, it was the captain of the boat that decided that --

MS. WILLIAMS: Okay. What I guess I'm getting at is are you -- Were you concerned at all that by not also taking some volume from the banks that there was input from gravity CSOs that we missed by going just into the center that would have been captured by taking a composite sample from the banks and the center? Do you understand?

MS. PETROPOULOU: Yes. I don't have any reason to believe that we overestimated or underestimated the concentrations of pathogens. What you are implying is that during wet weather the concentrations at the sides could be even higher than what we measured in the center of the channel. I mean --

MS. WILLIAMS: It's possible, right?
MS. PETROPOULOU: I have no reason to believe one way or the other.

MS. WILLIAMS: Thank you. I think
that's --
DR. TOLSON: Let me add one thing to that. If that were the case, then our risk estimates would be biased high. So if we find a -- I'm sorry -- risk estimates in terms of the effect of disinfection on decreasing risk to recreators would be biased high.

MS. WILLIAMS: But the actual risk to recreators in wet weather would be low, correct?

MR. ANDES: I think what he's trying to say is if he didn't capture enough of the wet weather --

MS. WILLIAM: I understand what he's trying to say. So I'm asking the risk to wet weather recreators, though, would be higher if that were the case, right?

DR. TOLSON: That would be correct.
MS. WILLIAMS: I'm almost done, I
think.
MR. ANDES: I have a follow-up. And the risk to dry water recreators would be lower?

DR. TOLSON: It would be unchanged,
but relatively it would be lower, yeah.
MS. WILLIAMS: I'm going to ask

Question 11. I know we sort of touched on this yesterday, but I'd like to try again. On Page 6, Paragraph 4 of your testimony it states, quote, "Disinfection results in effluent pathogen risk decreasing from a low level to essentially zero from the water reclamation plants but has little impact in waterway pathogen concentrations affected by current or past wet weather conditions."

And my question is as TARP is contemplated and CSO events happen infrequently, will disinfection have more of an impact on the waterway pathogen concentration?

MR. ANDES: I think we've already objected to other questions about TARP. HEARING OFFICER TIPSORD: Actually, they asked and answered this yesterday. They're not familiar with TARP, so they couldn't answer the questions.

MS. WILLIAMS: Okay. Can I try to
rephrase it?
HEARING OFFICER TIPSORD: Sure. MS. WILLIAMS: I believe Mr. Lanyon testified that TARP was expected or hoped to reduce CSO events to one to two per year. MR. ANDES: I don't think that's -- he mentioned one to two, but I don't think your characterization is complete.

MS. WILLIAMS: Can you correct it for me? That would be fine. Would you like to characterize --

HEARING OFFICER TIPSORD: I think his comment was in his highest hopes it would be one to two.

MS. WILLIAMS: No. Highest hope was relation to my once in every five years. I thought he expected --

HEARING OFFICER TIPSORD: Let's
just -- How about we do it this way. Why don't you say what if they were reduced to four years.

MS. WILLIAMS: Four? That sounds
good. What if the CSO events are reduced
from, I think 43 is what we have now, to
four. How would that --
MR. ANDES: How would that do what?
MS. WILLIAMS: Will disinfection have
more of an impact on the waterway pathogen concentrations? DR. TOLSON: The effect of dry weather in disinfection and overall risk of the waterway are low under dry weather conditions. It's below the 8 per 1,000, and
it would stay there. It's very difficult to try to interpret what the overall effects of CSOs and of other potential inputs that might be affected by the completion of the TARP would be. So I really can't speculate on that.

MS. WILLIAMS: Let's move on to
No. 18. You state on Page 5 of your testimony, quote, "It is important to note that the U.S. EPA has not developed any secondary contact water quality criteria. However, the U.S. EPA has proposed a range of primary contact acceptable risk thresholds, and currently has primary contact water quality criteria protective of emersion
activities, that is based on an acceptable risk threshold of 8 illnesses per 1,000 swimmers."

Do you agree that this 8 in 1,000 risk levels expressed is a water quality criteria E. Coli value of 126 CFU per 100 milliliters?

MR. ANDES: I'm sorry. Does he agree with what?

MS. WILLIAMS: Does he agree that that 8 in 1,000 risk level is expressed as a water quality criteria E. Coli value of 126 CFU per 100 milliliters in the criteria document?

DR. TOLSON: I didn't participate in that formulation of that, so I'm --

MS. WILLIAMS: So you don't know? Why don't you take a look at --

MR. ANDES: That's, in part, a legal question in terms of whether it's a water quality criterion.

MS. WILLIAMS: It's a legal question to ask a technical expert what the number is in a U.S. EPA criteria document? Is that what you're saying?

MR. ANDES: You didn't refer specifically to the EPA document. You're asking about whether it's a water quality criteria, which is a legal term.

MS. WILLIAMS: Let's just take a look at Table 5-10. Maybe this will -- from Exhibit 71. I'm sorry. This is what I'm referring to when I'm asking. So I'm just asking if this number here where your table says 8 , and then next to it under E. Coli, 8, and then 126.

DR. TOLSON: We pulled this out of the EPA guidance. And I believe it is what it -it is represented correctly from there, I believe.

MS. WILLIAMS: Can you tell us what
would be a corresponding ambient standard that would be protective of incidental recreational uses that occur in the CAWS as to 8 illnesses per 1,000 swimmers risk level?

MR. ANDES: Let me first clarify
something, because it's very clear in the testimony, that the EPA 8 illnesses per 1,000 is not for incidental or noncontact
recreational uses; it's rather a primary contact number. EPA hasn't developed a secondary contact number. And you're talking about swimmers in that statement. So I think you're mixing apples and oranges. And you're asking him about, again, an ambient standard. MS. WILLIAMS: Is that an objection or a clarification?

HEARING OFFICER TIPSORD: Let him finish, please, Miss Williams. Go ahead, Mr. Andes.

MR. ANDES: I think you're also asking
him something that's a legal issue and is well beyond the scope of their testimony.

MS. WILLIAMS: I don't think it's
legal. That's for sure. If he doesn't know the answer, that's a different question.

HEARING OFFICER TIPSORD: I was going to say if -- Since he's already stated he's not familiar with 126 CFU per 100 milliliter, if he's unable to answer the next question, I disagree that it's a legal question also.

MS. WILLIAMS: What I would like to know, Dr. Tolson, is this: You are telling
us that the risk of recreating this these waters is well below the risk level that U.S. EPA utilizes to develop criteria. I would like to know if we were going to protect recreators in these waters at that risk level, what ambient criteria would we have to establish?

DR. TOLSON: Using an indicator organism, I don't think we have any data here to support an indicator organism as being very related to pathogen and risk. I mean that's the whole --

MS. WILLIAMS: Okay. So is it the testimony in this panel that at this current time there's no good science to use to establish an ambient standard for protection of the recreation that's occurring in the CAWS?

DR. GERBA: Well, it was based on epidemiological studies that were done by the U.S. Environmental Protection Agency to come up with those levels. And they had -- and that's the basis of -- the scientific basis
for those primary contact recreational water
standards.
DR. TOLSON: So in that respect it doesn't -- it wasn't produced in quantitative microbial risk assessment.

MS. WILLIAMS: What wasn't? You mean
U.S. EPA criteria was not?

DR. GERBA: None of those studies, to my knowledge, or most of them did they look at pathogens. They only looked at gastroenteritis illness related to full body contact swimming.

MS. WILLIAMS: You understand, I'm not trying to be combative. I really wanted to know. I mean we are -- this is a state regulator. We're here to try to figure out --

MR. ANDES: And I guess to be helpful, I would say that we definitely have other witnesses who will help fill in the details in terms of how we think that such water quality standard could be developed and will provide some recommendations in terms of the path forward that will include Dr. Dorovich, that will include Dr. Grenado, and others.

MS. WILLIAMS: But they're not talking about the risk levels, or are they?

MR. ANDES: They'll be talking about -- actually, Dr. Dorovich will be talking about risk levels, and Dr. Grenado will be talking about relations as to what the regulations should be.

MR. ETTINGER: Just to be clear, though, looking at 5-10, you've already said you don't like any of these indicators. So you don't really agree with the EPA E. Coli and enterococci numbers anyway?

DR. GERBA: I didn't say I didn't like
them. I said that's what's used right now. I said in the future, I think, my professional opinion is that some pathogen like adenoviruses might be included in there, but the standards are what they are.

MR. ETTINGER: Well, I'm not asking you a legal question. I'm just saying as a scientist, you don't think these numbers are correct. You think EPA's numbers here are -that their correlators are not useful?

DR. GERBA: I think their data is
correct. I think they did epidemiological studies on it. I'm not questioning their data or their -- I'm just saying in the future, additional parameters may be added, though, to assess the water quality in the
future. That's all I'm saying.
MR. ANDES: If I can clarify.
DR. GERBA: That's my opinion.
MR. ETTINGER: If you want to clarify
it, please do. Because I thought we went over this somewhat. And I took away from that that you didn't think that there was any particular relation between pathogens and E. Coli or pathogens and enterococci, and now I'm hearing something else.

MR. ANDES: I think the first issue is is that the EPA numbers that have been discussed are with reference to primary contact.

DR. GERBA: Right. That's correct.
MR. ANDES: Okay. In terms of the questions that have been asked of you regarding secondary contact regarding the types of recreation that are being proposed
here, the first question is do you see a clear link between any of these indicators and actual pathogen levels that would cause illness?

DR. GERBA: No. Because there's -can't find a relationship between the indicators and the pathogen levels in the water.

MR. ETTINGER: That was my point. As far as you're concerned, these numbers aren't even good for swimming.

DR. GERBA: I didn't say that.
MR. ANDES: He's speaking particularly about secondary contact uses with regard to the study at issue here.

MR. ETTINGER: Why would the correlation or lack of correlation between enterococci and pathogens differ whether you were considering it for secondary use or primary use? I mean the bugs are there or they aren't. So I guess I'm just not following.

DR. GERBA: It's related to the degree of exposure. Exposure is a lot less than a secondary contact.

MR. ANDES: I don't think, Albert, I don't think that this group is here to defend EPA science behind their criteria.

MR. ETTINGER: I'm not asking them to defend it. I'm asking them to say whether they agree with it or not as scientists.

MR. ANDES: But are you talking about the levels or are you talking about the specific parameters? I think there are two different issues.

MR. ETTINGER: If I had a higher
number of E. coli, would you say that I have a higher level of pathogens or not?

DR. GERBA: No, not necessarily.
MR. ETTINGER: And if I have a higher level of enterococci, do I have a higher level of pathogens or not?

DR. GERBA: No, not necessarily.
MR. ETTINGER: So you would conclude, I would think, that this chart, which assumes there is some relationship between these indicators and pathogens in the water, is misguided.

DR. GERBA: That does not assume that. What that -- that standard is based on epidemiological data related to gastroenteritis among the swimmers, not the pathogen levels.

MS. WILLIAMS: Can I ask -- I don't want to interrupt, but I just -- you left out fecal. Can I just ask the same -- if you have a higher level of fecal coliform in the water, do you have a higher level of pathogens, just to complete the --

DR. GERBA: Not necessarily.
MS. WILLIAMS: Sorry, Albert.
MR. ETTINGER: Let's go back, just talk about swimmers here. Pathogens are making the swimmers sick, right?

DR. GERBA: We don't know that for a fact. It could be nonpathogens that make the swimmers sick because they didn't do any follow-up on whether it was illness. It could be they ate too many hot dogs on the beaches, it could be on some of the beaches and that; or it could be the air was different. Perhaps there are allergens or
other substances people might inhale and react to on the beach. It's been brought up before that it could be made toxins from blue green algae aerosolized and inhaled. Because in this type of research they did not actually identify the agents causing gastrointestinal illness. So all of it may not be due to pathogens. The assumption here is that it is due to pathogens. What's regulated here is the probability -- the probability based on that 126. If you get gastroenteritis, it's not necessarily by swimming in these waters, not necessarily related to a pathogen; regulating swimming and diarrhea.

MR. ANDES: Let me take another shot.
MR. ETTINGER: Let me just -- It's my turn. There is some sort of statistically significant relationship between enterococci
and how many swimmers get sick. Is that true or false?

DR. GERBA: In terms of
gastroenteritis, yes.
MR. ETTINGER: There is, okay. Unless
the -- maybe I'm confused. But unless there is some relationship between enterococci and the number -- in the water and the number of hot dogs they ate on the beach, that's probably not a factor that's driving that.

DR. GERBA: I wouldn't presume so.
But, again, they did not identify that a pathogen actually caused that illness or which pathogen did, so that's still an unknown.

MR. ETTINGER: So your objection is really that this is a black box model. You go from enterococci to illnesses and you're not tracing the causation.

DR. GERBA: Right. At least in my professional opinion in the future people need to do studies on characterizing what caused the illness and what pathogens were in the water that bathers were exposed to.

MR. ANDES: I believe, correct me if I'm wrong, but I believe the reasons these numbers were used in this study simply as a point of reference that was available, a conservative point of reference, the lowest
risk threshold identified by the EPA to be used as sort of a screening level to identify where risks were low. Am I correct?

DR. GERBA: That's right.
DR. TOLSON: That's correct. MR. ANDES: So there was nothing intended in terms of the report indicating the technical validity of those numbers, particularly with reference to secondary contact.

DR. GERBA: That's correct.
MR. ANDES: Thank you.
HEARING OFFICER TIPSORD: All right.
This is probably a good point to take a break. It is my intention to stay this evening until we finish with this panel so that they don't have to come back in September. So you may want to get a snack depending upon how many questions we have.
(Short break taken.)
HEARING OFFICER TIPSORD: We can go
ahead. And, Miss Williams, you wanted to make a motion on the record?

MS. WILLIAMS: I wanted to briefly
make a motion on the record to request an
additional two-week extension to submit prefiled questions for the Midwest Generation witnesses, and I have spoken to Midwest Generation. They're agreeable to that.

HEARING OFFICER TIPSORD:
Mr. Ettinger, you wanted to join in that? I would be inclined to grant that and give that to everyone. So just so you all know, I will do that in a hearing officer order. When I do the separate hearing order for the remaining five hearings we have scheduled; for now, the five hearings.

And with that, Miss Williams, you had one more question, I think you said, one or two?

MS. WILLIAMS: So when we left off we were talking about the different indicators and whether they are correlated to pathogens. So, Mr. Gerba, can you tell us whether pathogen concentrations are correlated to risk of illness?

DR. GERBA: That's what the dose
response curve say that they generated in
human beings.
MS. WILLIAMS: Is that what you used to develop your risk assessment?

DR. GERBA: That's part of the process, but I didn't do the risk assessment. MS. WILLIAMS: Okay. Is that what you used, Mr. Tolson, to develop the risk assessment?

DR. TOLSON: That is correct. We used established dose response curves for pathogens under this study.

MS. WILLIAMS: You were --
DR. TOLSON: Want me to repeat that? MS. WILLIAMS: It was kind of hard to hear.

DR. TOLSON: We used established dose response parameters for the pathogens under investigation in the study. Mostly people tell me not to talk so loud.

MS. WILLIAMS: And you, in your testimony, say that you're a risk assessment specialist. Does that sound right?

DR. TOLSON: That is correct. That's one of the major components of my practice.

MS. WILLIAMS: Do you agree that an 8 in 1,000 risk of illness is a good target for recreational activity?

DR. TOLSON: I really can't evaluate how or why EPA selected that. I just took the EPA promulgated established number of eight and used that to sort of characterize our risk within our report.

MS. WILLIAMS: If they change the risk assessment level they relied on, would you have an opinion on that?

MR. ANDES: Up or down?
MS. WILLIAMS: Either.
DR. TOLSON: We could characterize it compared to that new number.

MS. WILLIAMS: If they changed it to one illness per 1,000 recreators, would you have an opinion on that?

DR. TOLSON: If we use that as our benchmark, then we would compare our numbers to that number. Yeah, sure. It's just a benchmark number out there.

MS. WILLIAMS: I think that's all I have.

HEARING OFFICER TIPSORD: Thank you, Miss Williams. Before we continue, I would note that these are prefiled questions that are mainly for Dr. Tolson.

MS. MEYERS-GLEN: That is correct.
HEARING OFFICER TIPSORD: As we
discussed off the record, Dr. Gerba has a flight and must leave no later than 5:30. So basically what I'm trying to get at is there shouldn't be a problem with him going ahead if we're not through, do you think?

MR. ANDES: Depends on, I guess, some of those questions are being answered by the panel.

HEARING OFFICER TIPSORD: Let's start and we'll see where we're at.

MS. MEYERS-GLEN: I have no problem
with that. Because my questions are predominantly --

HEARING OFFICER TIPSORD: Okay.
MS. MEYERS-GLEN: My name is Stacy Meyers, and I'm with Openlands.

HEARING OFFICER TIPSORD: Keep your voice up, please.

MS. MEYERS-GLEN: Dr. Tolson, we were discussing different literature that you combined with UAA survey data on existing recreational uses. You named two of them, one being Flat Water Classic and then the other reference to some rental facility. And in Question No. 1, I was wondering if you could please cite to the literature that you combined with the UAA survey including those and in addition to those in formulating your parameters for recreational uses.

DR. TOLSON: The UAA was the principal study for which all the analytical or quantitative evaluation was performed. It was ground truthed with some other data that
we pulled in including the data that you cited there.

MS. MEYERS-GLEN: What is that other data?

DR. TOLSON: That would be Flat Water Classic, boat rental receipts that IEPA were able to provide us to show that, you know, these are all the activities that were ongoing within the waterway.

MS. WILLIAMS: Did that UAA data hold up to this ground truthing?

DR. TOLSON: Yes, it did. We had information that said that there was additional canoeists, and we've had data that said there were additional boating. And the UAA data said that there was canoeing and boating going on. It seemed consistent with that.

MS. MEYERS-GLEN: What boat rental facility was that?

DR. TOLSON: I do not recall the boat rental facility, but we actually received that information from someone at IEPA, and I believe we cited that as a communication or something to that sent in the report.

MS. MEYERS-GLEN: Is there any way I can find that out, the name?

DR. TOLSON: I'll find it out in a second.

HEARING OFFICER TIPSORD: Excuse me.
Off the record for just a second.
(Off the record.)
HEARING OFFICER TIPSORD: Back on the
record.
MS. MEYERS-GLEN: I don't need it now. If you could just provide us with the name, that would be great, just to for expediency just to keep going.

MS. WILLIAMS: I think -- I mean do we think it was Rob Sulski? Is that it?

DR. TOLSON: I believe.
MS. MEYERS-GLEN: Can you just -- as long as I get the information that --

MR. SULSKI: It's one of the exhibits. It's the additional data beyond the UAA, Additional and Extra Recreational Data, Sulski IEPA, something like that.

HEARING OFFICER TIPSORD: And it's attached to the?

MR. SULSKI: It's attached to --
HEARING OFFICER TIPSORD: To Exhibit
$71 ?$
MR. SULSKI: No. It's an earlier exhibit that is besides the UAA report. And it was a compilation of e-mails and
correspondence between various users, and it was a compilation of additional data.

MS. MEYERS-GLEN: Is that the IEPA
Attachment No. K, Recreational Data --
MR. SULSKI: That is it.
HEARING OFFICER TIPSORD: Attachment K
to the proposal.
DR. TOLSON: I don't know if that's exactly the one or not, but I'll get the information on the data that I was referring to. I suspect that we're talking about the same thing, but you may have a larger data set than that was supplied to me. So I just want to make that clear that I don't know exactly that that's the right one, but I think is.

MS. MEYERS-GLEN: Thank you. Question No. 2, on Pages 2 and 3 of your testimony you state that, quote, "We assume that incidental ingestion by an individualist canoeing on the waterway will vary over a range and calculations that are performed account for all users even those that might capsize." Did you determine what risks were specifically attributable to the percentage of the people who capsized when canoeing or
kayaking on the CAWS?
DR. TOLSON: I believe we covered this, but we developed an ingestion range that included the potential for high exposure and low exposure. But we did not develop specific risk estimates for a capsizing canoeist within the waterway.

MS. MEYERS-GLEN: Thank you. No. 3 was partially answered. I know that you gave a breakdown yesterday of what stretches of the CAWS were included in each of the three segments in your study. Do all the waterways in each segment have identical
characteristics?
DR. TOLSON: I would say that there's differences that are either continuous difference along every foot of the CAWS way, yeah. There are some differences, physical or otherwise.

MS. MEYERS-GLEN: And I believe it was your testimony as well that there were certain waterways that were combined into segments closer to outfalls? DR. TOLSON: There are some areas that
are closer than others, sure.
MS. MEYERS-GLEN: Did you average in waterways that are not proposed for incidental contact recreational use when
calculating risk for canoeing?
DR. TOLSON: No. To my knowledge all
of the data that was collected as far as analytical data of pathogens within the waterway and all the exposure data that we developed from the UAA was all within the waterway segments that we identified yesterday.

MS. MEYERS-GLEN: So you only assessed
incidental contact waterways?
MR. ANDES: Want to specify which waterways you're talking about?

MS. MEYERS-GLEN: Well, what I'm asking is that did you break down all of the CAWS into three segments in the study, all the CAWS being all of the stretches of the Chicago area waterways at issue in this study?

MR. ANDES: Specifically you're asking whether he would include the few areas that
were not proposed for incidental contact recreational use?

MS. MEYERS-GLEN: I'm saying did you include everything from the Wilmette pumping station on the North Shore Channel all the way down the Chicago Sanitary Ship Canal down to the Brandon Street Lock and Dam as well as the Cal-Sag Channel all the way out to the Calumet River extending out to the Lake Michigan? Did you include all of those waterways that are considered to be the CAWS total in the UAA?

DR. TOLSON: I don't think so. So we did not include the Grand Calumet, which I think would be included within what you're looking at there. We just included the little Calumet. There may have been some other branches in there that we did not include, but we based our use information and our sampling points, as we've shown, within the waterways that we're representing the risks that are presented in Exhibit 71. If there's a specific segment that you have there which is noncontact that you'd like me to address, just say it and I'll let you know.

MS. MEYERS-GLEN: Sorry. I was just looking at exactly where this starts and where this ends. Did you include the Chicago Sanitary and Ship Canal from the confluence of the Calumet Sag channel down to the Brandon Street Lock and Dam?

DR. TOLSON: We do not have any analytical data, any microbiological data from the confluence south. So, no, it does
not represent that. My speculation is that the pathogen loads are actually lower there than they are in other places just because they're further away from the city CSO outfalls, pumping stations, other things. MS. MEYERS-GLEN: So it wasn't
included in your study?
DR. TOLSON: No.
MS. MEYERS-GLEN: On Page 8 of the executive summary in the microbial risk assessment study -- this is Question 4. The Geosyntec consultants performed for the district, it states that the Chicago area
waterways are used for recreational boating, canoeing, fishing, and other streamside activities. Can you tell us what other streamside recreational activities occur in the CAWS? What does that mean?

DR. TOLSON: Which question are you
reading here?
HEARING OFFICER TIPSORD: Question 4 on Page 2.

DR. TOLSON: So the other streamside activities, there were identifications within the UAA of passive recreation and other things, I imagine, that those would be other streamside activities; walking along the waterway would be one. But these are activities that one was not associated with actually contact of the water into the exposure groups that we identified as the high exposure characteristic of canoeing, the medium exposure, characteristic of fishing, the low exposure, characteristic of boating.

MS. MEYERS-GLEN: And you said earlier that you used the UAA study as the basis for recreational uses, what recreation uses you
chose, correct? That was the foundation?
DR. TOLSON: That is correct.
MS. MEYERS-GLEN: And so in the UAA you would agree that would include canoeing, sculling, hand-powered boating, fishing, wading, skiing, tubing, swimming, diving, and jumping, correct?

MR. ANDES: Are you saying did they
assess all of those?
MS. MEYERS-GLEN: That is what the UAA study reported as recreational uses along the CAWS. And since that is the foundation of the study as far as what recreational uses they determined were out there, I just wanted to verify that looking at the universe of the recreational uses.

DR. TOLSON: Right. We identified the secondary contact recreational -- incidental
contact recreational uses that were in the UAA. So we did not include swimming within our groupings that we assessed.

MS. MEYERS-GLEN: Okay. But it did include canoeing, sculling, hand-powered boating, fishing, wading, skiing, and tubing,
correct?
MR. ANDES: Tubing.
DR. TOLSON: Tubing is not included in there. There is another one, jumping and something else. Skiing was in there, that was one that we didn't include within our grouping. Those are primary contact activities. We would associate those with primary contact activities.

MS. MEYERS-GLEN: I'm going to come back to that particular point.

So in your opinion, the
activities listed in the UAA study are occurring on the CAWS then, correct? That's really not --

DR. TOLSON: We're not going to have any basis for that.

MS. MEYERS-GLEN: Now, the Geosyntec study refers to worse premise and I know that we covered this in some part, worse premise that disinfection is warranted in situations where direct human contact in the immediate vicinity of an outfall is possible. And I just wanted to be clear: People can canoe,
kayak, jet ski, or tube past these wastewater treatment plant outfalls to your knowledge, correct?

DR. TOLSON: I think we covered that quite a bit with Dr. Gerba's explanation of it.

MR. ANDES: I believe this issue of what the direct contact is has already been covered by Dr. Gerba.

MS. MEYERS-GLEN: I didn't say direct contact at all. I just wanted to know if they could kayak, canoe, or jet ski past on these waterways the wastewater treatment plant outfalls.

DR. TOLSON: There is no physical limitations to people going down the waterway, to my knowledge.

MS. MEYERS-GLEN: And then on Page 96 of the Geosyntec study it states that it is unlikely that users engage in nonemersion activities -- that users engage in nonemersion activities would be subject to levels of inhaled mists or sprays that will lead to a substantial increased ingestive
dose. And I know that we covered that with Ann Alexander as far as how you all assessed ingestion. I believe your Attachment 3, the risk study, Page 96, is where that quote lies. My questions to you are that did you consider how spray could increase the ingested dose for jet skiers?

DR. TOLSON: We did not attempt to calculate ingestion for jet skiing and inhalation and subsequent swallowing of sprays.

MS. MEYERS-GLEN: And you also didn't consider that for people that tube on the CAWS, correct?

DR. TOLSON: Say that again?
MS. MEYERS-GLEN: And you also didn't consider that for people that are engaged in tubing on the CAWS either, correct?

DR. TOLSON: Tubing was not one of
the --
MS. MEYERS-GLEN: Right.
MR. ANDES: I'd like to follow-up.
MS. MEYERS-GLEN: So, no, that wasn't considered, correct?

DR. TOLSON: Tubing was not considered as one of the activities that was one of the exposure groups that we looked at.

MS. MEYERS-GLEN: Right. But yet it was listed in the UAA as one of the recreational uses out on the CAWS, correct?

DR. TOLSON: I believe it was listed in the UAA. It was not grouped in one of our exposure groups.

MS. MEYERS-GLEN: Right.
MR. ANDES: I'd like to follow-up on those two questions, and this could be either Dr. Gerba or Dr. Tolson. If you can give us your judgment as far as you believe that the dose the jet skiers or tubers spray would be at all significant?

DR. TOLSON: I do not believe so. We actually tried to estimate what that could be. And if you look at a cloud, which is a pretty high mist-containing environment, you get about a half a mil per cubic meter in the air. So if someone were to breathe about a cubic meter per hour, that would give you about half a mil per hour ingestion rate. So
that is not nearly as high as some of the numbers we have as ingestion rates per hour for our exposures, and we felt that that was not really significant. We also don't think that there's mists out there to the level that would rise to a cloud.

MR. ANDES: Thank you.

MS. MEYERS-GLEN: I'm just going to ask one simple question. Jet skiing, though, can kick up spray, correct?

DR. TOLSON: Yes, it can.
MS. MEYERS-GLEN: I'm just going to introduce what has already been attached as Openland's attachment number -- may I?

HEARING OFFICER TIPSORD: We're going to mark this as Exhibit 82, if there's no objection. It's the attachment one to Openland's questions. Seeing none, it's Exhibit 82.

MS. MEYERS-GLEN: That's the one that was attached to my prefiled testimony, too. That's just showing the amount of spray actually kicked up by a jet ski. And that wasn't accounted for, correct, in the study?

DR. TOLSON: There was -- We did not estimate dose for jet skiers within our analysis, nor did we estimate dose from sprays for any of our exposure scenarios.

MS. MEYERS-GLEN: Okay. So then it wouldn't -- You wouldn't know then the increased risk -- you didn't study the increased risk for respiratory infection from an activity like that?

DR. TOLSON: I think we've been over this. We did not evaluate respiratory infection within the context of our risk assessment. That was not one of our stated objectives here.

MS. MEYERS-GLEN: And I'm turning specifically to your Attachment 3, the risk study, Page 133 --

HEARING OFFICER TIPSORD: For the record, when you are talking about Attachment 3, Attachment 3 to Tolson's testimony?

MS. MEYERS-GLEN: That is correct. Thank you. Why did not did you not account for intimate exposure of your areas that
might produce considerable mist such as aeration stations? It's Page 133.

DR. TOLSON: Okay. This is for respiratory illness associated with exposure to aeration stations. Is that what you're referring to?

MS. MEYERS-GLEN: That is correct.
DR. TOLSON: The study did not
evaluate respiratory risks. The focus was on GI illness. In addition, the data on exposure associated with those aerosols that might arrive from the aeration stations is unknown. We do not have a way of quantifying a dose. So even to do the GI component of
that, it proves problematic. We believe based on our assessment of what you could potentially contain in a mist that you could inhale that a dose would be low even if you were immersed in it.

MS. MEYERS-GLEN: I'm going to, just second part of D, yet there is incidental contact activity such as jet skiing, kayaking, canoeing, tubing, and sculling in the stretches of the CAWS that could occur
near the aeration standards, correct -- or the aeration stations. Sorry. Correct? DR. TOLSON: Yes. I do not know. HEARING OFFICER TIPSORD: For the record, Attachment 3 is Exhibit 71. It is the report that we've been discussing, and we should be clear on that. Because I, frankly, was a little lost. MS. MEYERS-GLEN: Okay. Going with my prefiled questions and I --

MR. ANDES: To follow-up on the aeration station issue, and whether these are within your knowledge. If not, we may ask this question later of district witnesses. First, are you aware of safety issues in terms of use of canoes, kayaks, and other boats near the aeration stations in terms of the bubbling water in those areas?

DR. TOLSON: Actually, I do not know that. I've been told that, but I'm not the best witness for that. Sorry.

MR. ANDES: Okay.
MS. MEYERS-GLEN: No. 7, the report
also -- the microbial risk assessment
Exhibit 71 also states that jet ski use is typically thought to involve immersion, and, thereby, would not be allowed under the conditions of the waterway. However, large jet ski boats would be allowed, and I believe that is Exhibit 71 at Page 97. My questions to you are this: Are you aware that the IEPA did not list jet skiing in the UAA as a primary contact activity; and although borderline distinguished it from water skiing in its statements of reasons as having a lower likelihood of ingesting appreciable amounts of water?

MR. ANDES: Are you asking him to
characterize the IEPA document?
MS. MEYERS-GLEN: Are you aware of
that? No. That's actually out of the IEPA statement of reasons. And I was wondering, since he's stating that in calling jet skiing primary contact and relied on the UAA, whether or not he was aware that it lists jet
skiing as a primary contact -- it does not list jet skiing as a primary contact activity, and although borderline,
distinguishes it from water skiing as having a lower likelihood of ingesting appreciable amounts of water.

MR. ANDES: I can read that, too. But
I would disagree with your characterization of the statement from the statement of reasons. If we want to read him the statement from the statement of reasons verbatim, that would be fine. I think it says something very different.

MS. MEYERS-GLEN: Sure. Absolutely. I can read you both segments, if you can hold on one second.

MR. ANDES: While we're waiting, if I can follow up on one question. Is it your understanding primary contact activities are not included in the proposed uses as designated by Illinois EPA?

DR. TOLSON: That is correct.
MR. ANDES: Thank you.
MS. MEYERS-GLEN: Okay. And to follow that, if we can actually start on Page 42 of the statement of reasons. I'm going to read you the definition of primary contact from
this, okay? Primary contact recreation is typically defined by states to encompass activities that could be expected to result in the --

HEARING OFFICER TIPSORD: You need to slow down.

MS. MEYERS-GLEN: Absolutely. Ingestion of or immersion in water such as swimming, water skiing, surfing, or any other activity where immersion in the water is likely. Now, we can agree that jet skiing is not included in that statement, correct?

MR. ANDES: I think you're --
HEARING OFFICER TIPSORD: But the
Footnote 3 --
MR. ANDES: -- characterizing the
testimony.
MS. MEYERS-GLEN: I'm about to get there. But in that list of primary contact they do not include jet skiing, correct?

DR. TOLSON: I'm not sure I -- I'm not sure I believe that. I think there's a footnote that's associated with that. MS. MEYERS-GLEN: There absolutely is.

But I want to take one step at a time. They list out primary contact uses; is that correct?

DR. TOLSON: There are probably a number of other primary contact uses that are not listed on there.

MS. MEYERS-GLEN: Okay. But in this list it does not include water skiing, correct?

HEARING OFFICER TIPSORD: Jet skiing.
MS. MEYERS-GLEN: Jet skiing. Thank
you.
MR. ANDES: It includes a general
statement at the end.
MS. MEYERS-GLEN: Yes. But we're going to get there one step at a time. It does not include -- It includes water skiing, though, right?

DR. TOLSON: I believe so. I don't have it in front of me, but, yeah, I take your word on it.

MS. MEYERS-GLEN: But it doesn't include -- even though it includes water skiing, it doesn't include jet skiing,
correct?
HEARING OFFICER TIPSORD: That's the third time you've asked that and the third time he's answered it.

MS. MEYERS GLEN: I haven't gotten an answer yet.

HEARING OFFICER TIPSORD: Yes. He said that's correct.

MS. MEYERS-GLEN: Thank you. I didn't
hear. Now, there is a footnote on Page 43 that says kayaking and jet skiing may be borderline recreational activities that many lump into primary contact but likely do not involve its high likelihood of ingestion of appreciable amounts of water as swimming, water skiing, and surfing. Okay. Can we agree that that's what this says?

DR. TOLSON: I believe that this is, in fact, what that says, yes.

MS. MEYERS-GLEN: So is it your belief then that IEPA, after hearing this, that IEPA considers jet skiing to be a primary contact activity?

DR. TOLSON: Based on the footnote
where it says many believe, I guess I would include myself in the group of many.

MS. MEYERS-GLEN: Okay. So -- all right. So then why do you choose to restrict the study to use of larger jet ski boats when the IEPA did not place such a distinction on jet skiing?

DR. TOLSON: I've actually toured the waterway, and my one occurrence with a jet boat out there did not look like the picture
that you have here. And I'm --
MS. MEYERS-GLEN: That's not my
question, though. My question is why did you --

HEARING OFFICER TIPSORD: Would you let him finish his answer before you interrupt him, please.

DR. TOLSON: My observations of jet boats in the one occurrence that I did see one was a two-man boat. The guys were in collared shirts, I believe, and straw hats kind of stuff. And it made me think maybe we could be misinterpreting the UAA study. I'm not sure if they included these guys as jet
skiers or not. So kind of to be conservative to make sure we captured all the uses we could out there, we just lumped the few observations of jet skis that we saw in the UAA, we put them under the boating so it would be included in there. Because we were really unsure whether they were this guy jet skiing or the guys that we'd observed on the waterway that were jet skiing in really kind of bigger boats.

MS. MEYERS-GLEN: The jet ski in front of you, would you consider that to be primary or secondary contact? I'm referring, just for the record, to the attachment that I --

HEARING OFFICER TIPSORD: Exhibit 82.
DR. TOLSON: Primary contact, because the guy doesn't look very sure of himself. I think he may fall off at any moment.

MS. MEYERS-GLEN: So it's not the activity, but the fact that that particular jet skier would fall off that's making that distinction?

DR. TOLSON: I think the distinction is that the person on this boat is having --
likely to have a high contact with water. We've grouped our exposures into those that have primary contact water that we've excluded from our analysis. This would be an activity I think that he has a life preserver on there, somebody who would have full body emersion, and it would not be one of the receptor scenarios that we've developed risk numbers for within our report.

MS. MEYERS-GLEN: If somebody is
wearing a life preserver on a two-seater, then that would be included as secondary contact?

DR. TOLSON: I think, you know, I'm trying to characterize within our receptors to include those jet skiers. Because my one observation of a jet boat on the waterway was
one where the occupants certainly didn't look like they were going to have full body emersion. If you would like, I can provide you a picture of that. I actually took a picture of them as we went by them on the waterway.

MR. ANDES: I thought we had them.
MS. MEYERS-GLEN: I'm just trying to understand where your line is as far as which jet skiers are included in secondary contact and which jet skiers are included in primary contact. That's all. Because it seems like there is some in one category and some in the other.

HEARING OFFICER TIPSORD: Is there --
DR. TOLSON: We did not try to characterize the specific activity where anybody was occurring. We developed these risk ranges that had ingestion rates that were kind of a big range. That being said, there were very few jet skis that were identified within the UAA. We included them in boating because there was a potential that if we didn't include them in boating, perhaps these -- we're talking about these two-man boats or larger boats that we didn't want to underrepresent within the study. I would characterize this particular activity that this gentleman is engaged in as a primary contact activity. But this is really outside of my realm of identifying primary contact
activities and secondary contact activities. It's not what I do.

MS. MEYERS-GLEN: You guys made a call, though, as to whether or not to include that activity?

DR. TOLSON: We had to take that handful of receptors and try to characterize them within the categories which we laid out within Exhibit 71, our risk assessment. We made the call that the boats -- that the jet skis could possibly be boats. We wanted to make sure we included anything that was potentially a recognized activity in the waterway, we included them within that group.

MS. MEYERS-GLEN: Yet if you're saying that you included it as a recognized activity, you also did not include swimming, correct, and that was a recognized activity?

DR. TOLSON: A recognized activity is more of a legal term that I probably shouldn't be invoking or else -- that's true. It was primary contact. We felt swimming was one that ought to be included.

MS. MEYERS-GLEN: But it was a
recognized activity. It was something in the UAA as listed as occurring, correct?

MR. ANDES: I'm going to really object to this argumentative line of question. He's answered the questions. He told you what he included and why.

MS. MEYERS-GLEN: Well, I'm confused in that he stated that he included it because it was a recognized activity on --

MR. ANDES: That's not what he said.
MS. MEYERS-GLEN: That's exactly what he said. So I'm curious then as to why he then did not include other recognized activities such as swimming.

DR. TOLSON: Another reason is the RFB for which we were responding to developing this clearly stated and listed those activities and how we would categorize them. Jet skiing was not included within that list.

MS. MEYERS-GLEN: Thank you.
DR. TOLSON: Swimming was not
including with that list. I'm not sure if it said anything about jet ski.

MR. ANDES: Did it say that primary
contact activities were not to be included?
DR. TOLSON: That's correct. Primary contact activities was not included.

MR. ANDES: Swimming is clearly primary contact. You decided not to include it?

DR. TOLSON: That's correct. Swimming is primary contact. It was not included.

MR. ANDES: Because the two-person boats were unclear, you decided to include them as boats?

DR. TOLSON: That is correct.
MR. ANDES: Thank you.
MS. WILLIAMS: Can I follow-up, please? Just since I wrote Footnote 3, I'd like to follow up by making sure I understand what you said here. You are saying you consider yourself someone who generally considers jet skiing, at least as conducted in this exhibit, primary contact activity generally?

DR. TOLSON: That's my opinion.
MS. WILLIAMS: Thank you.
MS. MEYERS-GLEN: One more question
along those lines. Although the resulting risk estimates do not account for such, did you seem to calculate how much more jet skiers likely to ingest appreciable quantities of water than a person canoeing? DR. TOLSON: We did not include
primary contact jet skiing as an activity that we developed, no.

MS. MEYERS-GLEN: Did Geosyntec
analyze exposure rates for kayaking, tubing, or sculling in comparison to tubing?

MR. ANDES: What kind of --
HEARING OFFICER TIPSORD: That's D.
MS. MEYERS-GLEN: 7D.
HEARING OFFICER TIPSORD: For the record, I think we've -- he's repeatedly stated that he did not consider tubing.

DR. TOLSON: That is correct. We did not consider tubing.

MS. MEYERS-GLEN: Then kayaking or sculling in comparison to canoeing.

DR. TOLSON: We didn't calculate an exposure rate for each individual activity. We developed a range of exposure rates for
which canoeing could be kind of the representative activity, and that was a distribution that ranged from high potentially capsizing events to low.

MS. MEYERS-GLEN: Do you know whether or not the exposure, the risk of exposure is higher for kayaking or sculling than canoeing?

DR. TOLSON: We don't have any data to support that. So, no, I don't know.

MS. MEYERS-GLEN: Could somebody in a kayak have a higher risk than someone in a canoe of exposure?

DR. TOLSON: They think could have a risk for a number or reasons. That's correct. Somebody in a canoe could have a higher risk than somebody in a kayak.

MS. DEXTER: Why did you choose canoeing as the representative activity?

DR. TOLSON: I believe it was -- It seemed like a reasonable thing to call that high contact activity. I believe the UAA has canoeing and kayaking as one group there, so to eliminate a lot of dashes within the
report, we called it canoeing.
MS. DEXTER: Did you have data on the canoeing? Was there -- Was there data to support the canoeing?

MR. ANDES: I think he already answered that question. It was ingestion rates; high, medium, and low ingestion rates.

MS. MEYERS-GLEN: Was there a difference in ingestion rates when looking to choose a representative for high contact in your study? Was there a difference in ingestion rates for canoeing and kayaking?

DR. TOLSON: Again, I think that
misrepresents what we're doing. We're just coming up with three sort of exposure groups. We've called that high exposure group canoeing which is sort of a representative recreational activity associated with the high. We didn't develop kayaking as, you know, 12.2 and canoeing as 12.3. There's no number that's associated with each individual thing and some together. We developed a distribution, a range, that incorporated all these sort of higher exposure activities.

MS. MEYERS-GLEN: So you treat the risk as the same?

MR. ANDES: Same as what?
MS. MEYERS-GLEN: For canoeing, kayaking, and sculling; all of those activities, the risk is treated as the same, correct? It's all considered to be high contact of the same risk?

DR. TOLSON: The category of higher exposure activities along the waterway. And had we not looked -- I don't think sculling was specifically called out within the UAA, so there would have been no way for us to tease out sculling versus the canoeing or kayaking. So there's a necessity for sort of grouping activities together.

MS. MEYERS-GLEN: Do you know whether sculling occurs on the CAWS?

DR. TOLSON: I have not seen it. I understand it does.

MS. MEYERS-GLEN: And 8 is asked and answered.

Nine, in quantifying the
amount of water ingested -- Wait a minute.
Sorry. I'm going to stop. Nine is asked and answered. Withdraw.

Ten. I just need a second. I want to see if this is asked and answered. Ten is partially asked and answered.

You stated earlier that the ingestion rates for fishing and boating were adjusted downwards using professional judgment, is that right, from canoeing?

DR. TOLSON: That is correct.
MS. MEYERS-GLEN: And was that your professional judgment used to set the rate?

DR. TOLSON: We met collectively as the Geosyntec team and our expert panel and discussed these matters. I think it was arrived to by consensus.

MS. MEYERS-GLEN: 11, when discussing how the risk assessment accounted for exposure duration, the report states that assumptions regarding length of time an
individual might be on the waterway are required; activity based assumptions were developed for this exposure input based on waterway specific information where available
and professional judgment guided by literary references. This is Exhibit 71, No. 101, Page No. 101.

DR. TOLSON: Okay.
MS. MEYERS-GLEN: Actually, I
apologize. This was asked and answered. Well, no, it was asked and answered for fishing and boating. How did Geosyntec exercise professional judgment in setting exposure duration for canoeing? We just talked about fishing and --

DR. TOLSON: I'm pretty sure we answered that, because we had the triangular shaped figure up that had the one to five hours, the two --

MS. MEYERS-GLEN: Right. But that's off of data. Where did your professional judgment come into play?

DR. TOLSON: It's not completely off of data. We had data to sort of inform that, but we had to make some professional judgment decisions here.

MS. MEYERS-GLEN: And what were those?
DR. TOLSON: Well, we didn't go from
zero hours. We truncated that distribution so it went from one to five hours. You know, selecting two hours as the median, it wasn't directly out of the data. We just picked two hours as a reasonable. It happened to fit pretty nicely. So the mean of that fit the EPA's exposure factor's handbook distribution of data for people that recreate around lakes and rivers.

MS. MEYERS-GLEN: But ultimately you used your professional judgment to arrive at that figure.

MR. ANDES: With data.
MS. MEYERS-GLEN: EXCuse me. That's not his testimony. Please allow the witness to testify.

Is that ultimately how you
arrived with --
DR. TOLSON: With data. Sorry.
MS. MEYERS-GLEN: That's all. I have
no further questions at this time.
MS. WILLIAMS: Can I just ask one
follow-up?
HEARING OFFICER TIPSORD: Absolutely.
You can ask two.
MS. WILLIAMS: No. I hope not. Do
you have a copy of Mr. Stuba's testimony?
DR. TOLSON: I do not. I don't think I've seen that either.

MS. WILLIAMS: Do you have one that you can show him, or do you want me to show him?

MR. ANDES: I don't think I have that handy.

MS. WILLIAMS: Mr. Stuba's testimony is Exhibit 62, and I'm handing you a copy. And I'd like you to take a look at the back where he has charts.

DR. TOLSON: Okay.
MS. WILLIAMS: Where they list types of recreational activity. Did you look at those in developing your risk assessment, the data from the district on recreation from the boats that go out to --

DR. TOLSON: We looked at this and we had some interviews with them, but we did not rely on this for any numerical computations for activities.

MS. WILLIAMS: Do you understand where jet skiing is logged on those logs as a recreational activity?

DR. TOLSON: Don't see a jet skiing in a column that's on the top of this. I don't know whether they hadn't seen one and that's the reason that they didn't start to log that and put it on here or not. But we relied on the UAA which was designed specifically to evaluate recreational use. And we felt that the strongest sort of data set to use to take proportions of recreational users in each of the modifications we were looking at.

MS. WILLIAMS: And obviously this is a question I should have asked of Mr. Stuba, I just didn't really realize it was an issue until today. So if none of you know, then that's fine. But what I would like to know is he does say in his testimony that there were six jet skiers observed?

MR. ANDES: If I can take a look.
MS. WILLIAMS: I would like to know
from the District, and if these witnesses can't answer, we'll try to bring it up next
week.
MR. ANDES: I'm sure they can't.
MS. WILLIAMS: Which category would the six jet skiers have been logged under?

MR. ANDES: Skiing and tubing.
MS. WILLIAMS: So jet skiing was
considered a type of skiing and tubing?
MR. ANDES: Yes.
MS. WILLIAMS: Thank you. That's all

I have.
MS. MEYERS-GLEN: May I ask one question that I forgot to ask?

HEARING OFFICER TIPSORD: Sure.
MS. MEYERS-GLEN: Thank you. Your risk assessment -- I think this will be pretty clear, but it doesn't account for the highest areas of recreational use in the waterway, correct?

DR. TOLSON: I did not say that.
MS. MEYERS-GLEN: Well, does your study account for -- Does it take into account where recreational use most commonly occurs in setting risk?

DR. TOLSON: We may have -- we did not
tease out use within any particular point within the waterway. We assumed that risk -we assumed that exposure could happen anywhere along the waterway. We did take data at specific points. Those points tended to be in the dry weather, at least, close to the District's outfalls. So they may have actually biased high the potential influence of the District's outfalls through the waterway, pathogen concentrations within the waterway.

MS. MEYERS-GLEN: Wasn't that averaged out, though, with other data that was also along the waterway farther downstream?

DR. TOLSON: Or actually within 10 to 15 both lengths upstream, but yes.

MS. MEYERS-GLEN: So what I'm asking -- Withdraw the question. I'm done. HEARING OFFICER TIPSORD: Anything further? Dr. Gerba, Dr. Tolson, Ms. Petropoulou, it has been a privilege and an honor. Thank you very much. And I will see all of us again on September 23, 9:00 a.m. here in this room where we will start
with Dr. Divorich. Thank you very much. We're adjourned.
(At which time the hearing was continued to September 23, 2008, at 9:00 a.m.)

* * * * * *

STATE OF ILLINOIS)
SS.
COUNTY OF COOK)
I, LAURA MUKAHIRN, being a Certified Shorthand Reporter doing business in the City of Chicago, Illinois, County of Cook, certify that I reported in shorthand the proceedings had at the foregoing hearing of the above-entitled cause. And I certify that the foregoing is a true and correct transcript of all my shorthand notes so taken as aforesaid and contains all the proceedings had at the said meeting of the above-entitled cause.

LAURA MUKAHIRN, CSR
CSR NO. 084-003592

